Causal modeling in the lung
Combining multiple data types to enhance clinical diagnosis

Takis Benos
Department of Computational & Systems Biology
University of Pittsburgh, SOM

CCM Workshop, Pittsburgh, PA
June 10, 2015
What kind of data do we collect from patients?

- Demographics, family history, patient’s history
- Clinical tests
- Clinical image data
- OMICS

© Benos lab / Univ of Pittsburgh 2014-15
Single Nucleotide Polymorphisms (SNPs)

- **Human Genome**: ~6B bp (2 x 3B bp)
 - ~50M SNPs have been catalogued

- **Each person**: 3-5M SNPs
 - 150K SNPs are not catalogued
 - ~60 SNPs are specific to you

- **Most SNPs** have no functional consequences, but some are disruptive
 - ~100 SNPs disrupt a gene copy
 - ~20 SNPs disrupt both copies

- **For every person** we can sample 1-2 million SNPs
DNA Methylation

- [C | A] methylation is a covalent modification
- In mammals, 60-90% of the CpG are methylated
- DNA methylation pattern affects
 - Gene expression
 - Genome stability
 - X chromosome inactivation
- Our assay sampled ~2M methylation events
Characteristics of mRNA and microRNA expression

• mRNAs code for proteins (~20K genes in mammals)
• microRNAs (miRNAs) reduce the levels of their target mRNAs in the cytoplasm (~2-3K miRNAs known in mammals)

• (m/mi)RNA expression changes depending on cell type, disease status, developmental stage, etc. They can be:
 - Markers of disease status
 • Diagnostic markers
 - Markers of therapy outcome
 • Prognostic markers
Lung diseases we are interested in
Chronic lung diseases – COPD (obstructive)

Physiological changes
- The airways and air sacs (alveoli) lose their elastic quality
- The walls between many of the air sacs are destroyed
- The walls of the airways become thick and inflamed
- The airways make more mucus, which can clog them

© Benos lab / Univ of Pittsburgh 2014-15
Chronic lung diseases - COPD (obstructive)

• **Symptoms**
 - Shortness of breath (dyspnea)
 - Cough with mucus

• **Risk factors**
 - Tobacco smoking
 - Air pollution
 - Occupational exposures
 - Genetics

• **Diagnosis** via spirometry
 - Forced Expiratory Volume in 1st sec \((\text{FEV}_1) \)
 - Forced Vital Capacity \((\text{FVC}) \)
 - \(\text{FEV}_1/\text{FVC} < 70\% + \) other symptoms ➔ COPD diagnosis

• **Treatment**
 - No known cure

• **Management**
 - Symptoms are treatable (e.g. bronchodilators, corticosteroids, etc)
 - Progression can be delayed by reduction of the risk factors

© Benos lab / Univ of Pittsburgh 2014-15
Chronic lung diseases - IPF (restrictive)

Physiological changes
- The tissue in the lungs becomes thick and stiff, or scarred over time (fibrotic tissue)
- This makes lungs unable to move oxygen to the bloodstream
Chronic lung diseases – IPF (restrictive)

• Symptoms
 - Age: >50 yrs
 - Cough w/o mucus
 - Progressive dyspnea
 - Characteristic “velcro-like” breathing
 - Disfigurement of fingertips (clubbing of the digits)

• Causes and Risk factors
 - “Idiopathic”
 - Tobacco smoking
 - Genetics
 - Environmental + occupational exposures (metal dust, wood dust, coal dust, silica, etc)

Prognosis: not good
2-5 years following diagnosis
5-yr survival: 20-40%
Pathways involved in IPF
TGF-β1 and Wnt signaling pathways
Transcriptional and post-transcriptional pathways

Image source: Naftali Kaminski, MD

© Benos lab / Univ of Pittsburgh 2014-15
The Lung Genomics Research Consortium (LGRC)
The LGRC resource

• LGRC resource includes a variety of omic, clinical and image data on chronic lung diseases such as
 - Chronic Obstructive Pulmonary Disease (COPD)
 - Interstitial lung disease (ILD), including Idiopathic Pulmonary Fibrosis (IPF)

• LGRC initial scope: use these data to...
 - Identify people at risk of developing COPD or ILD
 - Make an early diagnosis
 - Determine causes of disease
 - Provide personalized treatment

© Benos lab / Univ of Pittsburgh 2014-15
MGM-Learn methods perform better than GES, PC, PC_STABLE
“Undirecting” colliders has surprises

Collider: \(x_1 \perp x_2 \mid \emptyset \) and \(x_1 \not\perp x_2 \mid x_3 \)

\[A \perp B \mid Z \setminus \{A, B\} \]

\[x_1 \not\perp x_2 \mid x_3 \]
Identify associations between clinical features, omics and disease using graphical models (undirected)

We ran MGM on gene (mRNA) expression and few clinical variables.
Summary

- MGM-Learn is a new causal structure learning algorithm that works on continuous and discrete variables
- MGM-Learn can be used to analyze multi-modal data of various types
- Applied to LGRC limited data it uncovers interesting associations between clinical and omics variables
When I was saying “we”...

MGM-Learn development
Andrew J Sedgewick
(CompBio PhD student)

MGM-Learn testing
Andrew J Sedgewick

In collaboration with:

Clark Glymour, Dept Philosophy, CMU

Peter Spirtes, Dept Philosophy, CMU

Joe Ramsey, Dept Philosophy, CMU

© Benos lab / Univ of Pittsburgh 2014-16
Acknowledgements: Funding

NLM: R01 LM012087
NHLBI: R01 HL118536
NHLBI: U01 HL108642

NHGRI: U54 HG007934
Thank you!

Electronic contacts:
benos@pitt.edu
http://www.benoslab.pitt.edu

© Benos lab / Univ of Pittsburgh 2014-16
Questions???

Electronic contacts:
benos@pitt.edu
klea@pitt.edu
URL: http://www.benoslab.pitt.edu

Materials: http://www.benoslab.pitt.edu/ccd