Integrative *causal* networks for understanding complex human diseases

Jun Zhu, Ph. D. Professor of Genomics and Genetic Sciences Icahn Institute of Genomics and Multi-scale Biology The Tisch Cancer Institute Icahn Medical School at Mount Sinai New York, NY

http://research.mssm.edu/integrative-network-biology/ Email: jun.zhu@mssm.edu Mount

) ک

@lcahnInstitute

Pittsburg University, October, 2015

Sinai

Biological networks/pathways

Why Bayesian network is chosen for causal modelling?

A framework for building biological causal networks

Association vs Causality

WHEN INFORMED BY HIS DOCTOR OF THE CORRELATION BETWEEN FAT DOG S AND THEIR MASTERS, BRIAN SET OUT IMMEDIATELY TO RECTIFY HIS WEIGHT PROBLEM.

From Stephen Friend

atherosclerosis

High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport

Gerd Assmann, Helmut Schulte, Arnold von Eckardstein, Yadong Huang

1996

Abstract

The incidence of coronary heart disease (CHD) was assessed via the Prospective Cardiovascular Münster (PROCAM) study in 19 698 volunteer subjects aged between 16 and 65 years. An adequate incidence of atherosclerotic CHD was only found in male subjects greater than 40 years of age. The analysis and subsequent 6 year follow-up period was, therefore, confined to 4559 male participants aged 40–64 years. In the follow-up period, 186 study participants developed atherosclerotic CHD (134 definite non-fatal myocardial infarctions (MIs) and 52 definite atherosclerotic CHD deaths including 21 sudden cardiac deaths and 31 fatal MIs). Univariate analysis revealed a significant association between the incidence of atherosclerotic CHD and high-density lipoprotein cholesterol (*P* < 0.001), which remained after adjustment for other risk factors.

RESEARCH

Table 3| Description of included studies of cholesteryl ester transfer protein (CETP) inhibitors

Reference	Trial drugs and dose	Control	Follow-up (months)	No enrolled (No intervention, No control)	Statin use (%)	Men (No intervention, No control)	Mean (SD) age (years) (intervention, control)	White ethnicity (%)	Increase in HDL from baseline in active arm (%)
Dal- OUTCOMES ³³ 2012	Dalcetrapib 600 mg daily	Placebo	31	15 871 (7938, 7933)	97	6365, 6436	60.3 (9.1), 60.1 (9.1)	88	40
Dal-PLAQUE ³⁴ 2011	Dalcetrapib 600 mg daily	Placebo	24	130 (64, 66)	87	51, 55	62.6 (8.2), 64.6 (7.8)	92	31
Dal-VESSEL ^{ss} 2012	Dalcetrapib 600 mg daily	Placebo	8	476 (239, 237)	95	211, 211	62.3 (7.05), 61.9 (7.92)	NR	31
Define ³⁶ 2010	Anacetrapib 100 mg daily	Placebo	18	1623 (811, 812)	99	629, 618	62.5 (8.7), 62.9 (9.0)	83	138
Illuminate ³⁷ 2007	Torcetrapib 60 mg daily	Placebo	18	15 054 (7528, 7526)	100	5854, 5861	61.3 (7.6), 61.3 (7.6)	93	72
Illustrate ³⁸ 2007	Torcetrapib 60 mg daily	Placebo	24	1188 (591, 597)	100	416, 421	56.9 (9.1), 57 (9.2)	NR	61
Radiance 1 ³⁹ 2007	Torcetrapib 60 mg daily	Placebo	24	850 (423, 427)	100	214, 232	46.8 (12.0), 45.2 (12.9)	NR	52
Radiance 2 ⁴⁰ 2007	Torcetrapib 60 mg daily	Placebo	20	752 (377, 375)	100	237, 245	57.9 (8.1), 56.5 (8.2)	NR	63

HDL=high density lipoprotein; NR=not reported.

Fig 4 The statin revolution: without background statin treatment, fibrates and niacin were found to reduce non-fatal myocardial infarction.

	No of ever	nts/total			
Non-fatal myocardial infarction	Intervention	Control	Odds ratio	M-H, % (I)	Odds ratio M-H,
Niacin			Tandoin (95	70 CI)	
No background statin	136/1659	394/3332			0.67 (0.54 to 0.82)
Background statin	509/15 371	527/14 939	-		0.94 (0.83 to 1.06)
Test for heterogeneity: I ² =87%					
Fibrate					
No background statin	773/14 236	1181/15 896	-		0.72 (0.65 to 0.79)
Background statin	173/2765	186/2753			0.92 (0.74 to 1.14)
Test for heterogeneity: I ² =78%					
CETP inhibitor					
Background statin	582/18 003	553/18008	+		1.05 (0.93 to 1.18)
		0	.2 1	5	
		F	avours ntervention	Favours control	

Daniel Keene et al. BMJ 2014;349:bmj.g4379

©2014 by British Medical Journal Publishing Group

The cost of developing a prescription drug that gains market approval

A simple biological question: are there causal/reactive relationships?

A Bayesian network approach:

A Bayesian network approach:

A Bayesian network \neq a causal structure

Markov Equivalent models

Bayesian network: how to break Markov equivalent?

Animal model: mouse F2 intercrosses

Causal inference: genetics

Perturbations with a causal anchor

--Natural variation in a segregating population provides the same type of causal anchor

Schadt et al. Nature Genetics (2005)

A Bayesian network approach:

A Bayesian network approach:

Not Markov Equivalent models

Yeast data

Structure priors based on causality

- Estimate confidence of causality
 - Bootstrap samples for 200 times
 - Factions of causal, reactive, independent calls

$$p(X_a - > X_b) = 1 - \frac{\sum_{i \in PB} p(X_a \perp X_b \mid l_i)}{\sum_{i \in PB} 1}$$

The pair is causa/reactive

$$p(X_{a} - > X_{b}) = \frac{2^{*} \sum_{i} p(X_{a} - > X_{b} | l_{i})}{\sum_{i} p(X_{a} - > X_{b} | l_{i}) + p(X_{b} - > X_{a} | l_{i})}$$

Bayesian Network: a simulation study

Simulation of data with network and genetics constraints

Bayesian network: Genetics information is critical when sample size is small

A framework for data integration

Bayesian network: PPI

Bayesian network: PPI

Clique community (partial clique)

Bayesian network: Transcription Factors

Introducing scale-free priors for TF or protein

complex

$$p(T \rightarrow g) \propto w(T)$$
$$w(T) = \log\left(\sum_{g_i \in R} |r(T, g_i)| > r_{cutoff}\right)$$

Integration improves network qualities

BN	KO data	GO terms	TF data
w/o any priors	125	55	26
w/ genetics priors	139	59	34
w/ genetics, TF and PPI priors	152	66	52

Prospective validation is the gold standard

ILV6 gives rise to large expression signature

- ILV6 KO sig enriched (p~10E-52)
- GCN4 upregulated in ILV6 KO \rightarrow large signature

LEU2 KO gives rise to small expression signature

- LEU2 KO sig enriched (p~10E-18)
- GCN4 downregulated in LEU2 KO \rightarrow small signature

How does LEU2 affect LEU3 activity?

LEU3 binding sites

Surrogate marker for Leu3p activity

mRNA expression

LEU2

A framework for building causal networks

Bayesian network

Zhu et al, PLoS Biology, 2012

Metabolite abundance is under genetic control

Zhu et al, PLoS Biology, 2012

KEGG biochemical pathways

 $p(m \rightarrow e) \propto e^{-\lambda d_{m,e}}$

Zhu et al, PLoS Biology, 2012

LEU2 mRNA is causal to 2-isopropylmalate

Zhu et al, PLoS Biology, 2012

LEU3 binding site

LEU3 regulation

• The activity of *Leu3*p is positively regulated by alphaisopropylmalate (IPM), the product of the first step in leucine biosynthesis

Sze JY, *et al.* (1992) In vitro transcriptional activation by a metabolic intermediate: activation by Leu3 depends on alpha-isopropylmalate. *Science* 258(5085):1143-5

• The degree of activation by *Leu3*p is *Leu3*p concentration dependent, and it has been shown that *LEU3* gene expression is regulated by general amino acid control, which is mediated by the GCN4 transcription factor

Zhou K, *et al.* (1987) Structure of yeast regulatory gene LEU3 and evidence that LEU3 itself is under general amino acid control. *Nucleic Acids Res* 15(13):5261-73

2-isopropylmalate: mechanism of causal regulator LEU2

Networks facilitate direct identification of genes that are causal for disease

Yang et al, Nature Genetics (2009)

	Gene symbol	Gene name	Variance of OFPM explained by gene expression*	Mouse model	Source
	Zfp90	Zinc finger protein 90	68%	tg	Constructed using BAC transgenics
	Gas7	Growth arrest specific 7	68%	tg	Constructed using BAC transgenics
	Gpx3	Glutathione peroxidase 3	61%	tg	Provided by Prof. Oleg Mirochnitchenko (University of Medicine and Dentistry at New Jersey, NJ) [12]
	Lactb	Lactamase beta	52%	tg	Constructed using BAC transgenics
	Me1	Malic enzyme 1	52%	ko	Naturally occurring KO
	Gyk	Glycerol kinase	46%	ko	Provided by Dr. Katrina Dipple (UCLA) [13]
	Lpl	Lipoprotein lipase	46%	ko	Provided by Dr. Ira Goldberg (Columbia University, NY) [11]
	C3ar1	Complement component 3a receptor 1	46%	ko	Purchased from Deltagen, CA
Schadt et al. Nature Genetics (2005)	Tgfbr2	Transforming growth factor beta receptor 2	39%	ko	Purchased from Deltagen, CA

Multiple genes in a network causing diseases!

Emilsson et al, Nature 2008; Chen Y et al. Nature, 2008

Guilt by association

Vol 447 7 June 2007 doi:10.1038/nature05911		nature		
	Disease/Trait	GWAS_snp	Reported Gene(s)	eSNP_gene
		rs10889353	ANGPTL3	ANGPTL3
	Testicular germ cell tumor A K I I C	rs210138	BAK1	BAK1
	Colorectal cancer	rs4444235	BMP4	BMP4
2 2	Serum IgE levels	rs2251746	FCER1A	FCER1A
Gonomo-wide associ	Atifettaits study of 1/ (1633	GNG4	GNG4
Genome-wide associa	Multiple sclerosis	rs9271366	HLA-DRB1	HLA-DRB1
cases of seven comm	Phannaido at his is a sand	rs6457617	MHC	HLA-DQA1
	Type 1 diabetes	rs9272346	МНС	HLA-DQB1
3.000 shared contro	cohn's disease	rs3197999	MST1	MST1
	Body mass index	rs10838738	MTCH2	MTCH2
The Wellcome Trust Case Control Consortium*	HDL cholesterol, Triglycerides	rs7679	PLTP	PLTP
	Glioma	rs6010620	RTEL1	RTEL1
	Attention deficit hyperactivity disorder	rs260461	ZNF544	ZNF544
	Coronary disease, LDL	rs599839	CELSR2, PSRC1, MYBPHL	SORT1, PSRC1, CELSR2
	-Coronary disease, LDL Lung cancer	rs599839 rs8034191	CELSR2, PSRC1, MYBPHL CHRNA3, CHRNA5, PSMA4, LOC123688	SORT1, PSRC1, CELSR2 PSMA4
nature	Coronary disease, LDL Lung cancer Weight	rs599839 rs8034191 rs2844479	CELSR2, PSRC1, MYBPHL CHRNA3, CHRNA5, PSMA4, LOC123688 AIF1, NCR3	SORT1, PSRC1, CELSR2 PSMA4 BAT3
genetics	Coronary disease, LDL Lung cancer Weight Type 1 diabetes	rs599839 rs8034191 rs2844479 rs7804356	CELSR2, PSRC1, MYBPHL CHRNA3, CHRNA5, PSMA4, LOC123688 AIF1, NCR3 Intergenic	SORT1, PSRC1, CELSR2 PSMA4 BAT3 SKAP2
genetics	Coronary disease, LDL Lung cancer Weight Type 1 diabetes Testicular germ cell tumor	rs599839 rs8034191 rs2844479 rs7804356 rs4699052	CELSR2, PSRC1, MYBPHL CHRNA3, CHRNA5, PSMA4, LOC123688 AIF1, NCR3 Intergenic Intergenic	SORT1, PSRC1, CELSR2 PSMA4 BAT3 SKAP2 LOC56898
nature genetics	Coronary disease, LDL Lung cancer Weight Type 1 diabetes Testicular germ cell tumor Crohn's disease	rs599839 rs8034191 rs2844479 rs7804356 rs4699052 rs6596075	CELSR2, PSRC1, MYBPHL CHRNA3, CHRNA5, PSMA4, LOC123688 AIF1, NCR3 Intergenic Intergenic Intergenic	SORT1, PSRC1, CELSR2 PSMA4 BAT3 SKAP2 LOC56898 SLC22A5
genetics	Coronary disease, LDL Lung cancer Weight Type 1 diabetes Testicular germ cell tumor Crohn's disease Cognitive test performance	rs599839 rs8034191 rs2844479 rs7804356 rs4699052 rs6596075 rs2832077	CELSR2, PSRC1, MYBPHL CHRNA3, CHRNA5, PSMA4, LOC123688 AIF1, NCR3 Intergenic Intergenic Intergenic Intergenic	SORT1, PSRC1, CELSR2 PSMA4 BAT3 SKAP2 LOC56898 SLC22A5 CCT8
nature genetics	Coronary disease, LDL Lung cancer Weight Type 1 diabetes Testicular germ cell tumor Crohn's disease Cognitive test performance Systemic lupus erythematosus	rs599839 rs8034191 rs2844479 rs7804356 rs4699052 rs6596075 rs2832077 rs10798269	CELSR2, PSRC1, MYBPHL CHRNA3, CHRNA5, PSMA4, LOC123688 AIF1, NCR3 Intergenic Intergenic Intergenic Intergenic Intergenic	SORT1, PSRC1, CELSR2 PSMA4 BAT3 SKAP2 LOC56898 SLC22A5 CCT8 C1orf9
nature genetics	Coronary disease, LDL Lung cancer Weight Type 1 diabetes Testicular germ cell tumor Crohn's disease Cognitive test performance Systemic lupus erythematosus Colorectal cancer	rs599839 rs8034191 rs2844479 rs7804356 rs4699052 rs6596075 rs2832077 rs10798269 rs4779584	CELSR2, PSRC1, MYBPHL CHRNA3, CHRNA5, PSMA4, LOC123688 AIF1, NCR3 Intergenic Intergenic Intergenic Intergenic Intergenic Intergenic Intergenic	SORT1, PSRC1, CELSR2 PSMA4 BAT3 SKAP2 LOC56898 SLC22A5 CCT8 C1orf9 GREM1
nature genetics Robust associations of four	Coronary disease, LDL Lung cancer Weight Type 1 diabetes Testicular germ cell tumor Crohn's disease Cognitive test performance Systemic lupus erythematosus Colorectal cancer Type 1 diabetes	rs599839 rs8034191 rs2844479 rs7804356 rs4699052 rs6596075 rs2832077 rs10798269 rs4779584 rs1701704	CELSR2, PSRC1, MYBPHL CHRNA3, CHRNA5, PSMA4, LOC123688 AIF1, NCR3 Intergenic Intergenic Intergenic Intergenic Intergenic Intergenic RAB5B, SUOX, IKZF4, ERBB3, CDK2	SORT1, PSRC1, CELSR2 PSMA4 BAT3 SKAP2 LOC56898 SLC22A5 CCT8 C1orf9 GREM1 RPS26
nature genetics Robust associations of four from genome-wide analyses	Coronary disease, LDL Lung cancer Weight Type 1 diabetes Testicular germ cell tumor Crohn's disease Cognitive test performance Systemic lupus erythematosus Colorectal cancer Type 1 diabetes QT interval	rs599839 rs8034191 rs2844479 rs7804356 rs4699052 rs6596075 rs2832077 rs10798269 rs4779584 rs1701704 rs4725982	CELSR2, PSRC1, MYBPHL CHRNA3, CHRNA5, PSMA4, LOC123688 AIF1, NCR3 Intergenic Intergenic Intergenic Intergenic Intergenic Intergenic RAB5B, SUOX, IKZF4, ERBB3, CDK2 KCNH2	SORT1, PSRC1, CELSR2 PSMA4 BAT3 SKAP2 LOC56898 SLC22A5 CCT8 C1orf9 GREM1 RPS26 IAN4L1
nature genetics Robust associations of four from genome-wide analyses	Coronary disease, LDL Lung cancer Weight Type 1 diabetes Testicular germ cell tumor Crohn's disease Cognitive test performance Systemic lupus erythematosus Colorectal cancer Type 1 diabetes QT interval Intracranial aneurysm	rs599839 rs8034191 rs2844479 rs7804356 rs4699052 rs6596075 rs2832077 rs10798269 rs4779584 rs1701704 rs4725982 rs4725982 rs700651	CELSR2, PSRC1, MYBPHL CHRNA3, CHRNA5, PSMA4, LOC123688 AIF1, NCR3 Intergenic Intergenic Intergenic Intergenic Intergenic Intergenic RAB5B, SUOX, IKZF4, ERBB3, CDK2 KCNH2 BOLL, PLCL1	SORT1, PSRC1, CELSR2 PSMA4 BAT3 SKAP2 LOC56898 SLC22A5 CCT8 C1orf9 GREM1 RPS26 IAN4L1 PLCL1
nature genetics Robust associations of four from genome-wide analyses John A Todd ¹ , Neil M Walker ^{1,9} , Jason D Cooper ^{1,9} , De	Coronary disease, LDL Lung cancer Weight Type 1 diabetes Testicular germ cell tumor Crohn's disease Cognitive test performance Systemic lupus erythematosus Colorectal cancer Type 1 diabetes QT interval Intracranial aneurysm Body mass index	rs599839 rs8034191 rs2844479 rs7804356 rs4699052 rs6596075 rs2832077 rs10798269 rs4779584 rs1701704 rs4725982 rs700651 rs7498665	CELSR2, PSRC1, MYBPHL CHRNA3, CHRNA5, PSMA4, LOC123688 AIF1, NCR3 Intergenic Intergenic Intergenic Intergenic Intergenic RAB5B, SUOX, IKZF4, ERBB3, CDK2 KCNH2 BOLL, PLCL1 SH2B1	SORT1, PSRC1, CELSR2 PSMA4 BAT3 SKAP2 LOC56898 SLC22A5 CCT8 C1orf9 GREM1 RPS26 IAN4L1 PLCL1 EIF3C
nature genetics Robust associations of four from genome-wide analyses John A Todd ¹ , Neil M Walker ^{1,9} , Jason D Cooper ^{1,9} , De	Coronary disease, LDL Lung cancer Weight Type 1 diabetes Testicular germ cell tumor Crohn's disease Cognitive test performance Systemic lupus erythematosus Colorectal cancer Type 1 diabetes QT interval Intracranial aneurysm Body mass index Rheumatoid arthritis	rs599839 rs8034191 rs2844479 rs7804356 rs4699052 rs6596075 rs2832077 rs10798269 rs1701704 rs1701704 rs4725982 rs700651 rs7498665 rs881375	CELSR2, PSRC1, MYBPHL CHRNA3, CHRNA5, PSMA4, LOC123688 AIF1, NCR3 Intergenic Intergenic Intergenic Intergenic Intergenic Intergenic RAB5B, SUOX, IKZF4, ERBB3, CDK2 KCNH2 BOLL, PLCL1 SH2B1 TRAF1, C5	SORT1, PSRC1, CELSR2 PSMA4 BAT3 SKAP2 LOC56898 SLC22A5 CCT8 C1orf9 GREM1 RPS26 IAN4L1 PLCL1 EIF3C TRAF1

Our Data Supports SORT1 as the Strongest Candidate Gene

Schadt et al., PLoS Biol., 2008; 6:e107

ARTICLES

From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus

Kiran Musunuru^{1,2,3}*, Alanna Strong⁴*, Maria Frank-Kamenetsky⁵, Noemi E. Lee¹, Tim Ahfeldt^{1,6}, Katherine V. Sachs⁴, Xiaoyu Li⁴, Hui Li⁴, Nicolas Kuperwasser¹, Vera M. Ruda¹, James P. Pirruccello^{1,2}, Brian Muchmore⁷, Ludmila Prokunina-Olsson⁷, Jennifer L. Hall^{2,8}, Eric E. Schadt⁹, Carlos R. Morales¹⁰, Sissel Lund-Katz¹¹, Michael C. Phillips¹¹, Jamie Wong⁵, William Cantley⁵, Timothy Racie⁵, Kenechi G. Ejebe^{1,2}, Marju Orho-Melander¹², Olle Melander¹², Victor Koteliansky⁵, Kevin Fitzgerald⁵, Ronald M. Krauss¹³, Chad A. Cowan^{1,2}, Sekar Kathiresan^{1,2}* & Daniel J. Rader⁴*

Why it is so hard to model biological systems?

► The more we learn, the more complicated it becomes!

It is not one gene to one protein anymore!

Epigenetic regulation : heritable changes in gene function that cannot be explained

by changes in DNA sequence

- DNA methylation
- Chromotin structure

Junk DNA?

Post transcriptional regulation

- Splicing (1981)
- RNA editing (1986)
- miRNA mediated regulation (1993)

Post translational regulation

- Phosphorylation
- Glycosaltion
- acetylation

Integrating omics data

Complex diseases: observations to models

perturbations

Integrating omics data into Bayesian network models

- Genetics
 - Zhu et al, Cytogenet Genome Res, 2004
 - Schadt et al, Nature Genetics, 2005
 - Zhu et al, PLoS Comp. Biol. 2007
- Proteomics and Genomics
 - -Zhu et al, Nature Genetics, 2008
- ► CNV
 - Tran et al, BMC Sys. Biol, 2011
- Metabolomics
 - -Zhu et al, PLoS Biol. 2012
- Methylation data
 - Yoo et al, PLoS Genetics, 2015

Complex traits

time

Genetic background

Integration of time dimension data into Bayesian network

Constructing causal networks

Dynamic Bayesian network

Granger causality

Human blood expression profile time series

Integration of genetics, genomics and temporal data using Dynamic Bayesian network

Zhu*, Chen* et al., PLoS CompBio, 2010

Integration of time dimension data into Bayesian network

Time series of drug response in a yeast F2 cross

Yeung et al., PNAS, 2011

Multi-polynomial Temporal Genetic Association

- Assume that for each genotype, time-series gene expression levels follow a multivariate normal density (Wu et al.)
- The mean vector is modeled by the cubic polynomial curve, m is the number of time points

$$\vec{g}_{j} = [g_{j}(t)]_{1 \times m} = [\beta_{0j} + \beta_{1j}t + \beta_{2j}t^{2} + \beta_{3j}t^{3}]_{1 \times m}$$

 The covariance matrix is assumed to be the same for both genotyps and modeled using AR(1) repeated measurement errors (Daviddian et al; Verbeke et al)

$$\Sigma = \sigma_e^2 \begin{bmatrix} 1 & \rho & \cdots & \rho^{m-1} \\ \rho & 1 & \cdots & \rho^{m-2} \\ \cdots & \cdots & \cdots & \cdots \\ \rho^{m-1} & \rho^{m-2} & \cdots & 1 \end{bmatrix}$$

Unpublished results

MPTGA

Density for time-series data, m=6

$$f_j(y) = \frac{1}{(2\pi)^{m/2}} \exp[(\vec{y} - \vec{g}_j) \Sigma^{-1} (\vec{y} - \vec{g}_j)^T / 2]$$

• Joint likelihood for N-95 segregants, $\Theta = (\beta_{0j}, \beta_{1j}, \beta_{2j}, \beta_{3j}, \rho, \sigma_e^2)$

$$L(\Theta) = \prod_{i=1}^{N} \left[\delta_{i0} f_0(\vec{y}_i) + \delta_{i1} f_1(\vec{y}_i) \right]$$

- Maximum likelihood estimate (MLE)
- Likelihood ratio test

$$H_0: \beta_{00} = \beta_{01}, \beta_{10} = \beta_{11}, \beta_{20} = \beta_{21}, \beta_{30} = \beta_{31}$$

H₁: at least one of the equalities does not hold

Unpublished results

Simulation Study

- Simulate time series data from multivariate normal distribution, with mean vector modeled by various patterns that are similar to the observed experimental results.
- Data drawn either from a single model or two separate models
- 10,000 groups of time series data were simulated, in which each group is composed of 100 6-point time series data
- Performance comparison
 - ROC curve
 - simulation under different auto-regressive coefficient $\,
 ho$

ROC curves

 ROC curve comparing performance among three different time-dependent genetic association methods

Unpublished results

Mathematical Models eQTL effect
M1:
$$X_{i,i} = \widehat{\phi_{i0}}(\alpha_{00} + \alpha_{10}X_{i,i-1}) + \delta_{i1}(\alpha_{01} + \alpha_{11}X_{i,i-1}) + \varepsilon_{i}$$

 $Y_{i,i} = \beta_{0} + \beta_{1}Y_{i,i-1} + \beta_{2}X_{i,i-1} + \mu_{i}$
Auto-regressive term
M2: $Y_{i,i} = \delta_{i0}(\beta_{00} + \beta_{10}Y_{i,i-1}) + \delta_{i1}(\beta_{01} + \beta_{11}Y_{i,i-1}) + \mu_{i}$
 $X_{i,i} = \alpha_{0} + \alpha_{1}X_{i,i-1} + \alpha_{2}Y_{i,i-1} + \varepsilon_{i}$
M3: $X_{i,i} = \delta_{i0}(\alpha_{00} + \alpha_{10}X_{i,i-1}) + \delta_{i1}(\alpha_{01} + \alpha_{11}X_{i,i-1}) + \varepsilon_{i}$
 $Y_{i,i} = \delta_{i0}(\beta_{00} + \beta_{10}Y_{i,i-1}) + \delta_{i1}(\beta_{01} + \beta_{11}Y_{i,i-1}) + \beta_{2}X_{i,i-1} + \mu_{i}$
M4: $Y_{i,i} = \delta_{i0}(\alpha_{00} + \alpha_{10}X_{i,i-1}) + \delta_{i1}(\alpha_{01} + \alpha_{11}X_{i,i-1}) + \alpha_{2}Y_{i,i-1} + \varepsilon_{i}$
M5: $X_{i,i} = \delta_{i0}(\alpha_{00} + \alpha_{10}X_{i,i-1}) + \delta_{i1}(\alpha_{01} + \alpha_{11}X_{i,i-1}) + \varepsilon_{i}$
 $Y_{i,i} = \delta_{i0}(\beta_{00} + \beta_{10}Y_{i,i-1}) + \delta_{i1}(\beta_{01} + \beta_{11}Y_{i,i-1}) + \mu_{i}$
M5: $X_{i,i} = \delta_{i0}(\beta_{00} + \beta_{10}Y_{i,i-1}) + \delta_{i1}(\beta_{01} + \beta_{11}Y_{i,i-1}) + \mu_{i}$
M6: $Y_{i,i} = \delta_{i0}(\beta_{00} + \beta_{10}Y_{i,i-1}) + \delta_{i1}(\beta_{01} + \beta_{11}Y_{i,i-1}) + \mu_{i}$
M5: $X_{i,i} = \delta_{i0}(\beta_{00} + \beta_{10}Y_{i,i-1}) + \delta_{i1}(\beta_{01} + \beta_{11}Y_{i,i-1}) + \mu_{i}$
M6: $Y_{i,i} = \delta_{i0}(\beta_{00} + \beta_{10}Y_{i,i-1}) + \delta_{i1}(\beta_{01} + \beta_{11}Y_{i,i-1}) + \mu_{i}$
M6: $Y_{i,i} = \delta_{i0}(\beta_{00} + \beta_{10}Y_{i,i-1}) + \delta_{i1}(\beta_{01} + \beta_{11}Y_{i,i-1}) + \mu_{i}$
M6: $Y_{i,i} = \delta_{i0}(\beta_{00} + \beta_{10}Y_{i,i-1}) + \delta_{i1}(\beta_{01} + \beta_{11}Y_{i,i-1}) + \omega_{i}$
M6: $Y_{i,i} = \delta_{i0}(\beta_{00} + \beta_{10}Y_{i,i-1}) + \delta_{i1}(\beta_{01} + \beta_{11}Y_{i,i-1}) + \mu_{i}$
M6: $Y_{i,i} = \delta_{i0}(\beta_{00} + \beta_{10}Y_{i,i-1}) + \delta_{i1}(\beta_{01} + \beta_{11}Y_{i,i-1}) + \mu_{i}$
M6: $Y_{i,i} = \delta_{i0}(\beta_{00} + \beta_{10}Y_{i,i-1}) + \delta_{i1}(\beta_{01} + \beta_{11}Y_{i,i-1}) + \mu_{i}$

Model Selection: BIC or AIC Unpublished results

eQTL and CI

	Static (T0)	MPTGA	Union	Regression
# eQTL identified	2698	3078	5336	2534
Avg. 1-LOD drop CI (kb)	41.44	16.91	46.99	7.37

Unpublished results

Histogram plot

 Number of linkages plotted against genome location by static approach and three time-dependent approaches.

				Si	ze		Overlap with Rapamycin Signiture						
HotSpot	Chr	Pos			UNION(>=9								
			T0(>=51)	MP(>=52)	3)	REG(>=82)	то	MP	MP-T0	UNION	UNION-T0	REG	REG-T0
1	5	10,000	63	28	89	80	0.791445	N/A	N/A	N/A	N/A	N/A	N/A
2	6	230,000	60	10	57	25	1.000000	N/A	N/A	N/A	N/A	N/A	N/A
3	10	390,000	53	57	88	140	1.000000	0.263320	0.093846	N/A	N/A	0.190718	0.052744
4	3	210,000	82	49	119	307	0.521534	N/A	N/A	0.641771	1.000000	0.165317	0.235254
5	2	550,000	309	737	1057	1044	0.340028	0.010014	0.074378	0.902415	0.959815	0.383476	0.598213
6	3	90,000	95	63	121	211	0.028996	0.000506	0.048672	0.049577	1.000000	0.102558	0.658762
7	5	430,000	59	81	164	143	0.760136	0.724516	1.000000	0.630408	0.603578	0.483478	0.587675
8	7	370,000	60	84	115	100	1.000000	1.000000	1.000000	0.903533	0.522707	0.485801	0.105384
9	8	110,000	101	151	237	172	0.315836	0.253973	0.143157	0.651793	0.913613	0.679832	0.693857
10	12	670,000	425	215	666	451	0.989515	0.657945	0.724856	0.999955	0.999073	0.997853	1.000000
11	13	50,000	260	331	660	455	0.007584	0.004479	0.239248	0.009641	0.243907	0.000722	0.035084
12	14	450,000	1030	906	1692	899	0.822970	0.559392	0.299970	0.917223	0.865509	0.671883	0.391116
13	14	490,000	751	722	1396	704	0.818425	0.532639	0.578993	0.955582	0.932882	0.622181	0.475578
								8.92553E-					
14	15	110,000	557	709	1611	1148	0.143048	07	0.001653	0.002092	0.010411	0.001866	0.017717
								1.08694E-					
15	15	170,000	450	1218	2043	1724	0.007575	05	0.006387	0.009224	0.180087	0.000711	0.047979
16	16	510,000	254	425	575	555	0.620547	0.000410	0.002262	0.474326	0.328784	0.319300	0.445220
17	1	50000	45	56	96	100	N/A	0.003634	0.001445	0.939067	1.000000	0.172711	0.152071
								6.34349E-	6.68703E-				
18	4	90,000	50	92	96	101	N/A	05	06	0.823102	0.751701	0.686390	0.511770
								1.56567E-	6.95272E-				
19	5	190,000	15	207	140	234	N/A	10	11	0.011356	0.005820	0.002211	0.001210
								1.41785E-	4.97133E-				
20	7	150,000	37	72	46	42	N/A	08	10	N/A	N/A	N/A	N/A
			_					9.71346E-	9.39187E-				
21	9	70,000	34	84	75	81	N/A	05	06	N/A	N/A	N/A	N/A
22	9	250,000	50	43	78	181	N/A	N/A	N/A	N/A	N/A	0.448413	0.380269
23	12	30,000	32	25	49	172	N/A	N/A	N/A	N/A	N/A	0.094553	0.094009
24	13	790,000	10	15	30	149	N/A	N/A	N/A	N/A	N/A	0.018386	0.014940
									2.10321E-				9.93968E-
25	7	970,000	23	87	33	137	N/A	0.000140	05	N/A	N/A	0.000150	05
26	8	130,000	33	73	102	71	N/A	0.115927	0.223108	0.324007	0.410008	N/A	N/A
			16	20	18	22	3	13		4		7	

Hotspots identified and enrichment analysis of Rapamycin respond signature

GO term enrichment analysis for eQTL hot spots identified by MPTGA

HotSpot	Chr	Pos	GO-Term	p-value
			cytosolic large ribosomal subunit (sensu	2 215 06
1	5	10,000	Eukaryota)	2.512-00
2	6	230,000	N/A	
3	10	390,000	N/A	
4	3	210,000	N/A	
5	2	550,000	structural constituent of ribosome	3.25E-43
6	3	90,000	branched chain family amino acid biosynthesis	2.89E-09
7	5	430,000	N/A	
8	7	370,000	protein folding	1.12E-14
9	8	110,000	mating projection tip	8.40E-08
10	12	670,000	ergosterol biosynthesis	6.29E-25
11	13	50,000	phosphate transport	2.15E-07
12	14	450,000	endopeptidase activity	5.55E-16
13	14	490,000	endopeptidase activity	5.66E-20
14	15	110,000	structural constituent of ribosome	2.48E-41
15	15	170,000	structural constituent of ribosome	1.45E-35
16	16	510,000	structural constituent of ribosome	1.55E-54
17	1	50000	N/A	
18	4	90,000	structural constituent of ribosome	3.21E-28
19	5	190,000	structural constituent of ribosome	1.67E-102
20	7	150,000	structural constituent of ribosome	5.58E-36
21	9	70,000	structural constituent of ribosome	5.50E-37
22	9	250,000	N/A	
23	12	30,000	N/A	
24	13	790,000	N/A	
25	7	970,000	structural constituent of ribosome	1.06E-51
26	8	130,000	mating projection tip	1.10E-07

- A key mechanism of cell controlling growth is to regulate ribosome biogenesis.
- Ribosomal protein gene expression is regulated by mTOR, target of rapamycin
- All eQTL hot spots identified by MPTGA method and enriched for the rapamycin respond signature are enriched for GO term structural constituent of ribosome

Causal regulator identification

 Causal regulators identification by time-dependent genetic causality test, and comparison with previous findings in Yvert et al and Zhu et al. Genes in red bold font are overlapping with previous findings.

[HotSpot	Chr	Pos	Yvert et al.	BN Full	TGCT(BIC)
[1	5	10,000	N/A	N/A	N/A
	2	6	6 230,000 N/A		N/A	N/A
[3	10	390,000	N/A	N/A	YR016W
[4	3	210,000	METALPHA1	METALPHA1	METALPHA1
[5	2	550,000	AMN1, MAK5	TBS1, TOS1, ARA1, CSH1, SUP45, CNS1, AMN1	SEC66, ICS2, RPBS, UBS1
[6	3	90,000	LEU2	LEU2, ILV6, NFS1, CIT2, METALPHAL1	LEU2
	7	5	430,000	N/A	N/A	AVT6
[8	7	370,000	N/A	N/A	MRH4, YGL081W, PUS2
[9	8	110,000	N/A	N/A	ERG11, SHU1
[10	12	670,000	HAP1	HAP1	HAP1
	11	13	50,000	None	None	MDM1
[12	14	450,000	N/A	N/A	PHO23, TOP2, MKT1, YPT53
[13	14	490,000	None	SAL1, TOP2	TOP2, YDJ1, MKT1
[14	15	110,000	N/A	N/A	MKT1
[15	15	170,000	None	PHM7	YOL073C, ATP19, PHM7, MSH2, HAL9
[16	16	510,000	N/A	N/A	YPL038W-A, MET12, MET31, RMI1, YPL039W
	17	1	50000	N/A	N/A	PUS2, ASF2
[18	4	90,000	N/A	N/A	YDL203C, ASF2, PRR2, RTN2
[19	5	190,000	N/A	N/A	ISC1, SMB1
[20	7	150,000	N/A	N/A	UBS1, YLC1353W
	21	9	70,000	N/A	N/A	RRD1, ECM37, YL130W
	22	9	250,000	N/A	N/A	N/A
[23	12	30,000	N/A	N/A	N/A
[24	13	790,000	N/A	N/A	N/A
[27	7	970,000	N/A	N/A	CPD1, YHB1, SOL4
[28	8	130,000	GPA1	GPA1	ERG11, GPA1

RRD1 as a causal gene for the eQTL hot spot at chrIX:70,000

RRD1 ko vs wildtype

- 65 genes differentially expressed
- 3 of them overlap with genes in eQTL hot spot chrIX:70,000
- 21 of them overlap with genes in eQTL hot spot chrXV:170,000 (5.7 fold enrichment, p-value=1.9e-11)

RRD1 as a causal gene for the eQTL hot spot at chrIX:70,000

RRD1 ko vs wildtype both treated with rapamycin

- 584 genes differentially expressed
- 52 of them overlap with genes in eQTL hot spot chrIX:70,000 (6.1 fold enrichment, p=2.0e-31)
- 35 of them overlap with genes in eQTL hot spot chrXV:170,000 (2.5 fold enrichment, p-value=5.6e-79)

Lin et al., (unpublished)

RRD1 as a causal gene for the eQTL hot spot at chrIX:70,000

Lin et al., (unpublished)

Aknowledgements

Zhu lab

Seungyeul Yoo Eunjee Lee Li Wang Luan Lin Quan Long

Mount Sinai Genomics Institute

Eric Schadt **Bin Zhang** Zhidong Tu **Charles Powell** Patrizia Casaccia Supported by:

Boston University

Avrum Spira Joshua Campbell

U Washington

Roger Baumgarner

Berkerley

Rachel Brem

Princeton

Lenoid Kruglyak

•Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai

•Janssen

- Canary Foundation
- Prostate Cancer Foundation
- •NIH
- •NCI