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Fast Greedy Search (FGES) Algorithm for Discrete Variables 
 
This document provides a brief overview of the FGES algorithm, focusing on a version of FGES 
that works with discrete variables called FGES-discrete (FGESd).   
 
 
Purpose 
 
FGESd is an algorithm that takes as input a dataset of discrete variables, greedily searches 
over selected causal Bayesian network (CBN) structures1 (models), and outputs the highest 
scoring model it finds. The model that FGESd returns serves as a data-supported hypothesis 
about causal relationships that exist among the variables in the dataset. Such models are 
intended to help scientists form hypotheses and guide the design of experiments to investigate 
these hypotheses. 
 
Methodological Approach 
 
FGES is an optimized and parallelized version [Ramsey, 2015] of an algorithm developed by 
Meek [Meek, 1997] called the Greedy Equivalence Search (GES). The algorithm was further 
developed and studied by Chickering [Chickering, 2002]. GES is a Bayesian algorithm that 
heuristically searches the space of CBNs and returns the model with highest score it finds. In 
particular, GES starts its search with the empty graph. It then performs a forward stepping 
search in which edges are added between nodes in order to increase the Bayesian score. This 
process continues until no single edge addition increases the score. Finally, it performs a 
backward stepping search that removes edges until no single edge removal can increase the 
score. 
 
FGESd uses the BDeu2 scoring measure, which is described in detail in [Heckerman, 1995]. 
 
Input Data and Parameters 
 
FGESd has the following requirements for data input: 
 

 the (training) data are in a table in which columns represent variables, rows represent 
samples, and the value of each variable in a sample is discrete. 

 the first row of the table lists the variable names, in order and unique; the data and 
variable names are separated by a delimiter (default: tab). 

 there are no missing values in the table. 
 
FGESs takes the following parameters, which modify the behavior of the algorithm: 

 depth - specifies the maximum number of edges to orient into a node during a single 
orientation step (FGESd uses a default search depth of -1, which indicates unlimited 
depth).  Small search depth values will tend to reduce the search time. 

                                                
1 A CBN structure is a directed acyclic graph in which nodes represent variables and arcs represent direct causation 

among the nodes, where the meaning of direct is relative to the nodes in the CBN. For further information about 
CBNs, see [Spirtes, 2010; Lagani, 2016; Pearl 2016].  
2 BDeu stands for Bayesian Dirichlet likelihood equivalence and uniform. It is based on assuming a 
Dirichlet parameter prior probability and a multinomial likelihood. It uses Dirichlet parameter priors that 
guarantee that CBNs that represent the same dependence and independence relationships among the 
variables (by way of d-separation) are assigned the same score. 
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 structure-prior – for each node in a CBN, it provides the following prior probability that 
the node has a given set of parents: 

 
 

 
where v is the number of variables in the CBN, p is the number of parents of the child 
node, and e is a parameter that is approximately equal to the expected number of 
parents of the nodes in the CBN; by default we use e = 1. The structure prior of a 
network is equal to the product over the structure priors of each node in the network.   

 sample-prior – a real valued parameter that specifies the parameter (probability) priors in 
the CBNs searched by FGESd. FGESd uses the BDeu scoring measure, for which the 
expectations of the prior probabilities are uniform. The sample-prior indicates how 
confident we are that these expectations are indeed uniform; the larger the sample-prior, 
the more confident we are. By default, sample-prior = 1, which reflects weak confidence 
that the probabilities in the data-generating CBN are uniform. 

 disable-heuristic-speedup - FGESd by default applies a heuristic speedup; this condition 
is discussed briefly below. Simulation results indicate that using the heuristic has little or 
no negative effect on precision-recall performance and leads to a marked decrease in 
runtime. The user has the option to disable it by using this flag.  

 skip-category-limit – FGESd has a default limit of 10 categories per variable. The user 
has the option to disable this validation step by using this flag. 

 knowledge - the user may specify knowledge by providing a file that describes 
precedence and required and/or forbidden edges in the CBN structure.  By default, the 
algorithm assumes no prior knowledge about the CBN structure 

 exclude-variables – the user may specify which variables to exclude from the dataset by 
using this switch to point to a file that contains the name of a variable on each row. 

 thread – by default the algorithm will run in a parallel fashion using as many threads as 
are needed and available on the system.  The user has the option to specify a smaller 
number of threads. 

 graphml - the user has the option to output the graph in standard GraphML format.  By 
default the program will output a text file describing the causal graph and the search 
path.   

 
Output 
 
FGESd outputs the most probable CBN structure it finds, according to the BDeu scoring 
measure. More precisely, it outputs a “pattern”3 [Chickering, 2002] containing arcs4 (), which 
represent direct causation, and undirected edges (―), where such an edge indicates there is a 
causal arc, but its direction cannot be determined.5 
 
Algorithmic Assumptions 
 

                                                
3 Patterns are also known as PDAGs, essential graphs, and maximally oriented graphs. 
4 Arcs are direct edges. 
5 Methods exist for converting a pattern into a directed, acyclic graph (DAG) [Meek, 1995], which defines a CBN 

structure. In general, there are many possible DAGs consistent with a given pattern. Thus, a pattern defines an 
equivalence class of DAGs (i.e., CBN structures). 
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This section describes a sufficient set of assumptions for the application of FGESd to achieve 
the guarantees described in the next section. While the pattern output by FGESd may still 
include correct edges (and perhaps many correct edges) even if one or more of these 
assumptions are violated, there are no theoretical guarantees it will do so. 
 
A sufficient set of conditions for recovering the causal structure of the data-generating process 
in the large sample limit (i.e., as the sample size grows without bound) is as follows. Assume 
that the causal process generating the data D given to FGESd is accurately modeled by a CBN 
containing only discrete, measured variables, which we call G. Assume that each variable 
(node) in G is a function of its parents that is modeled by a multinomial probability distribution. 
Finally, assume that each case in D was obtained by randomly sampling all the variables in G 
according to the joint distribution defined by G. 
 
While the above procedure is simple, it includes several assumptions that may not be 
immediately obvious. Key among them are the following: 
 

 cases (samples) in the data D are independent and identically distributed. 

 the causal Markov condition holds [Spirtes, 2010]. This condition states that a variable is 
independent of its non-effects, given its direct causes (parents). It expresses a form of 
local causality.  

 the causal faithfulness condition holds with probability 1 [Spirtes, 2010]. This condition 
states that all the independence relationships among the measured variables are implied 
by the causal Markov condition.  

 there are no missing data. The user must fill in missing data before running FGESd. 
Many statistical packages provide methods for handling missing values, including 
imputing them. 

 there is no measurement noise, so that the value of a node in the data generating 
process is equal to its measured value. 

 there are no hidden confounders of the measured variables. That is, none of the 
measured variables have a common hidden variable as one of their direct causes 
(relative to the variable set). This is perhaps the strongest assumption of FGESd, 
because hidden confounders are typically replete in scientific data. Nonetheless, the 
output of FGESd may still provide helpful clues about the causal relationships among the 
measured variables. The Tetrad system [Tetrad, 2016] currently contains several 
algorithms that model latent confounders, including FCI and RFCI. The Center for 
Causal Discovery plans to release a relatively efficient algorithm called GFCI that 
models hidden confounders and uses FGES as an initial step. 

 there is no selection bias. This means that the chance a case (sample) was selected 
from the population for inclusion in dataset D did not depend on the values of any of the 
measured variables in the data. 

 there are no feedback cycles among the measured variables. Extensions to CBNs, such 
as causal Dynamic Bayesian Networks (DBNs) [Neapolitan, 2003], do allow feedback 
cycles, but they are not currently implemented in FGESd. 

 
Structure Learning Performance Guarantees 
 
If the assumptions in the previous section hold, then in the large sample limit, the CBN structure 
output by FGESd will contain (1) an arc X  Y if and only if X causes Y; (2) an edge (―) if and 
only if either X causes Y or Y causes X; and (3) no edge between X and Y if and only if  X and Y 
have no direct causal relationship between them. 
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Practice Dataset 
 
We used the CBN shown in Figure 1 and Table 1 to generate the simulated data shown in Table 
2. The user may wish to apply FGESd (with its default settings) to the dataset in Table 2 and 
verify that the CBN structure obtained is the one shown in Figure 1.   
 
 

 
Figure 1. The CBN structure used to generated the practice dataset. 
 
 
Table 1. Conditional and prior probabilities for the CBN used to generate the practice dataset.  
All variables are Boolean, represented by a value of 0 or 1. 
 

P(X=0) 0.5336 

P(Y=0|X=0, Z=0) 0.5439 

P(Y=0|X=0, Z=1) 0.4986 

P(Y=0|X=1, Z=0) 0.8671 

P(Y=0|X=1, Z=1) 0.9464 

P(Z=0|W=0) 0.0603 

P(Z=0|W=1) 0.5174 

P(W=0) 0.4958 
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Table 2. Simple practice dataset generated from the network structure and parameterization in 
Figure 1 and Table 1.  The MULT column indicates how many instances of a given row we 
provided to the FGESd algorithm. 

MULT X Y Z W 

8 0 0 0 0 

8 0 0 0 0 

55 0 0 0 1 

135 0 0 1 0 

71 0 0 1 1 

12 0 1 0 0 

51 0 1 0 1 

123 0 1 1 0 

64 0 1 1 1 

8 1 0 0 0 

96 1 0 0 1 

225 1 0 1 0 

111 1 0 1 1 

23 1 1 0 1 
 
 
Performance on Simulated Data 
 
We evaluated the performance of FGESd on simulated data. We first created a random CBN  
with a given number of nodes and edges, which we call CBNgen. We then randomly sampled the 
distribution defined by CBNgen to generate a set of training data D consisting of 1000 samples. 
We provided that data to FGESd to obtain the pattern that it output, which we call Pout. We then 
derived the pattern of CBNgen, which we call Pgen. Thus, both Pgen and Pout  are patterns. We 
compared Pgen with Pout to derive edge precision and arc recall. Two nodes are considered to 
have an edge between them if they have any edge type between them (i.e., X  Y, X  Y, or X 
– Y); in this case, we call X and Y adjacent. Edge recall is the fraction of pairs of variables 
adjacent in Pgen that are also adjacent in Pout. Edge precision is the fraction of pairs of variables 
adjacent in Pout that are also adjacent in Pgen. We also compared Pgen with Pout to derive arc () 
precision and arc recall. Arc recall is the fraction of arcs in Pgen that appear in Pout. Arc precision 
is the fraction of arcs in Pout  that appear in Pgen. We also recorded the CPU time in minutes that 
FGESd required to derive Pout when using a given number of processors on a machine at the 
Pittsburgh Supercomputing Center. The precision, recall, and timing results were averaged over 
10 repeats of the process just described. 
 
If the heuristic speedup option is selected, a few extra edges may be included in the graph in 
principle and some orientations may be missed that can in principle be made; nonetheless, the 
performance is still quite good. The performance shown in Table 2 is based on using the 
heuristic speedup.   
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Table 2. Performance results for FGESd on simulated data. 

# Nodes # Edges # Repeats Average 
Edge  
Precision 

Average 
Edge 
Recall 

Average 
Arc  
Precision 

Average 
Arc 
Recall 

# Processors Average 
Learning 
Time  
(minutes) 

1,000 1,000 10 99.9 79.1 90.7 43.2 3 0.03 

1,000 2,000 10 99.9 83.5 93.4 66.2 6 0.03 

10,000 10,000 10 99.8 72.9 91.3 39.4 120 0.75 

10,000 20,000 10 99.5 46.7 84.6 25.7 120 0.76 

100,000 100,000 10 100.0 71.1 93.1 90.1 120 98.1 

100,000 200,000 10 100.0 44.8 87.4 23.2 120 97.1 

 
The results in Table 2 provide benchmarks that may be helpful in estimating the performance of 
FGESd when it is applied to real datasets. We emphasize, however, that the recall and 
precision results obtained with such simulated data may be higher than those obtained with real 
datasets. 
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