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The Greedy Fast Causal Inference (GFCI) Algorithm for Continuous 
Variables 
 
This document provides a brief overview of the GFCI algorithm, focusing on a version of GFCI 
that works with continuous variables, which is called GFCI-continuous (GFCIc).   
 
Purpose 
 
GFCIc [Ogarrio, 2016] is an algorithm that takes as input a dataset of continuous variables and 
outputs a graphical model called a PAG (see the appendix), which is a representation of a set of 
causal networks that may include hidden confounders1. The PAG that GFCIc returns serves as 
a data-supported hypothesis about causal relationships that exist among the variables in the 
dataset. Such models are intended to help scientists form hypotheses and guide the design of 
experiments to investigate these hypotheses. As mentioned, GFCIc does not presuppose that 
there are no hidden confounders.  
 
Methodological Approach 
 
GFCIc is a combination of the FGESc [CCD-FGES, 2016] algorithm and the FCI algorithm 
[Spirtes, 1993] that improves upon the accuracy and efficiency of FCI. In order to understand 
the basic methodology of GFCIc, it is necessary to understand some basic facts about the 
FGESc and FCI algorithms.  
  
The FGESc algorithm [Ramsey, 2015; CCD-FGES, 2016] is a score-based greedy search 
algorithm that takes as input sample data and optional background knowledge, and in the large 
sample limit outputs an equivalence class of CBNs2 that receives the highest score on the 
sample data. When its assumptions are satisfied, It is a fast and accurate algorithm; however, it 
presupposes that there are no unmeasured confounders in the true model.  
 
The FCI algorithm is a constraint-based algorithm that takes as input sample data and optional 
background knowledge and in the large sample limit outputs an equivalence class of CBNs that 
(including those with hidden confounders) that entail the set of conditional independence 
relations judged to hold in the population. It is limited to several thousand variables, and on 
realistic sample sizes it is inaccurate in both adjacencies and orientations.   
 
FCI has two phases: an adjacency phase and an orientation phase. The adjacency phase of the 
algorithm starts with a complete undirected graph and then performs a sequence of conditional 
independence tests that lead to the removal of an edge between any two adjacent variables that 
are judged to be independent, conditional on some subset of the observed variables; any 
conditioning set that leads to the removal of an adjacency is stored. After the adjacency phase, 
the resulting undirected graph has the correct set of adjacencies, but all of the edges are 
unoriented. FCI then enters an orientation phase that uses the stored conditioning sets that led 
to the removal of adjacencies to orient as many of the edges as possible.  

                                                
1 A hidden confounder is an unmeasured process (variable) that casually influences two or more measured variables. 
Measured variables can be statistically dependent due to the presence of hidden confounders. The possible 
presence of hidden confounders in biomedical data is a key reason that causal discovery from observational 
biomedical data is challenging. 

2 A CBN structure is a directed acyclic graph in which nodes represent variables and arcs represent direct causation 
among the nodes, where the meaning of direct is relative to the nodes in the CBN. For further information about 
CBNs, see [Spirtes, 2010; Lagani, 2016; Pearl 2016].  
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The FGESc algorithm is used to improve the accuracy of both the adjacency phase and the 
orientation phase of FCI by providing a more accurate initial graph that contains a subset of 
both the non-adjacencies and orientations of the final output of FCI. The initial set of non-
adjacencies given by FGESc is augmented by FCI performing a set of conditional independence 
tests that lead to the removal of some further adjacencies whenever a conditioning set is found 
that makes two adjacent variables independent. After the adjacency phase of FCI, some of the 
orientations of FGESc are then used to provide an initial orientation of the undirected graph that 
is then augmented by the orientation phase of FCI to provide additional orientations. The final 
output is a PAG (see the Appendix). 
 
Additional details about the GFCIc algorithm are available at [Ogarrio, 2016]. 
 
Input Data and Parameters 
 
GFCIc has the following requirements for data input: 
 

 the (training) data are in a table in which columns represent variables, rows represent 
samples, and the value of each variable in a sample is continuous. 

 the first row of the table lists the variable names, which should be unique; the data and 
variable names are separated by a delimiter (default: tab). 

 
Some of the key parameters taken by GFCI are as follows: 
 

 alpha: Significance level used in conditional independence tests. 

 data: The data file. 

 exclude-variables: A file containing variables to exclude. 

 faithfulness-assumed: If set to “yes, it means that whenever two variables are marginally 
independent, then FGESc will not consider adding an edge between them. In that case, 
the algorithm is speeded up, but may make additional errors in the output in certain 
unusual circumstances. The default value is "yes." 

 knowledge: The user may specify knowledge by providing a file that describes 
precedence and required and/or forbidden edges in the structure that is output.  By 
default, the algorithm assumes no prior knowledge about the causal graph structure 

 max degree: The maximum degree of the graph allowed in the FGES phase of GFCI.   

 out: Output directory for the file containing the output PAG. 

 penalty-discount: The specification of a complexity penalty parameter c that is used in 
the BIC equation in FGESc [see CCD-FGES, 2016].  The default value is 4. 

 thread: Number of threads to use in running GFCI when multiple cores are available. 

 
Additional GFCI parameters are described in 
http://www.ccd.pitt.edu/wiki/index.php?title=Documentation_on_using_the_causal-
cmd_software 
 
 

http://www.ccd.pitt.edu/wiki/index.php?title=Documentation_on_using_the_causal-cmd_software
http://www.ccd.pitt.edu/wiki/index.php?title=Documentation_on_using_the_causal-cmd_software
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Output 
 
In the large sample limit, the GFCIc algorithm outputs a single PAG [Spirtes 1999; Zhang 2008] 
that entails the set of conditional independence relations judged to hold in the population 
represented by its input dataset.  
 
Algorithmic Assumptions 
 
This section describes a sufficient set of assumptions for the application of GFCIc to achieve the 
guarantees described in the next section. While the pattern output by GFCIc may still include 
correct edges (and perhaps many correct edges) even if one or more of these assumptions are 
violated, there are no theoretical guarantees it will do so. 
 
A sufficient set of conditions for recovering the causal structure of the data-generating process 
in the large sample limit (i.e., as the sample size grows without bound) is as follows: Assume 
that the causal process generating the data D given to GFCIc is accurately modeled by a CBN 
containing only continuous variables, some of which may not be measured, which we call G. 
Assume that each variable (node) in G is a linear function of its parents with Gaussian noise. 
These constitute a sufficient set of conditions to yield the guarantees below. 
 
While the above procedure is simple, it includes several assumptions that may not be 
immediately obvious. Key among them are the following: 
 

 cases (samples) in the data D are independent and identically distributed. 

 in a causally sufficient set of variables, the causal Markov condition holds [Spirtes, 
2010]. This condition states that a variable is independent of its non-effects, given its 
direct causes (parents). It expresses a form of local causality.  

 the causal faithfulness condition holds with probability 1 [Spirtes, 2010]. This condition 
states that all the independence relationships among the measured variables are implied 
by the causal Markov condition.  

 there are no missing data. The user must fill in missing data before running GFCIc. 
Many statistical packages provide methods for handling missing values, including 
imputing them. 

 there is no selection bias [Spirtes, 1999]. This means that the chance a case (sample) 
was selected from the population for inclusion in dataset D did not depend on the values 
of any of the measured variables in the data. 

 there are no feedback cycles among the measured variables. Extensions to CBNs, such 
as causal Dynamic Bayesian Networks (DBNs) [Neapolitan, 2003], do allow feedback 
cycles, but they are not currently implemented in GFCIc. 
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Structure Learning Performance Guarantees 
 
If the assumptions in the previous section hold and the triangle heuristic admits all adjacencies 
that need to be removed3, then in the large sample limit the PAG output by GFCIc (see the 
appendix) will contain edges that are each correct. 
 
Practice Dataset 
 
We used the CBN shown in Figure 1 to generate simulated data containing 300 cases 
downloadable from the following link Media:Gfcic practice data.txt . In Figure 1 the numbers 
next to the directed edges represent linear coefficients, and the numbers next to the error terms 
represent the variances of the error terms, e.g. X2 = 0.4598 • X1 + 0.8722 •  L1 + EX2, where 
EX2 has variance 0.0279. The user may wish to apply GFCIc (with its default settings) to the 
dataset and verify that the PAG structure obtained is the one shown in Figure 2. 
 

.  
Figure 1. The CBN structure used to generate the practice dataset. 
 
 

 
 
Figure 2. The PAG structure output by GFCI when given data in Media:Gfcic practice data.txt  
 
Performance on Simulated Data 
 
Ogarrio et al. [Ogarrio, 2016] used simulated data on 1000 variables to evaluate GFCI and 
several other algorithms that also model latent confounding. The results are shown in Tables 1 
and 2. The primary measures of performance are precision, recall, and run time on a single 
processor. These measures are averaged over more than 100 runs, where each run consists of 
data generated from a different data-generating Bayesian network. The study used a machine 
with a single Intel I7 3.4Ghz processor running Ubuntu 14.04 with 20G memory allocated.  
 
Overall, GFCI had the best precision and recall for adjacency, arrow/tail, and edge-type 
determination. Although GFCI was generally slower than the other algorithms, it only required a 

                                                
3 The triangle heuristic removes an adjacency between variables A and B from the output of FGES only when that 

adjacency occurs in a triangle (i.e., there is a third variable C such that A, B, and C are all pairwise adjacent in the 
output of FGES.) This speeds up GFCI. It has not been proved that the algorithm is correct when the heuristic is 
employed, although we have found no case where the heuristic is incorrect. In the next version of GFCI, there will be 
a switch that allows the triangle heuristic to be turned off, in which case GFCI will be slower, but provably correct 
under the assumptions described in the section above on Algorithmic Assumptions. 

http://www.ccd.pitt.edu/wiki/images/Gfcic_practice_data.txt
http://www.ccd.pitt.edu/wiki/images/Gfcic_practice_data.txt
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few seconds to run on datasets containing 1000 variables. See [Ogarrio, 2016] for additional 
details about the evaluation. 
 
Table 1. This table lists the average running time and the average precision (prec.) and recall 
(rec.) for the different accuracy measurements for every algorithm in every parameterization 

with 1000 variables and  = 0.01. The bold values represent the best value in that column for 
that parameterization. 

DAG    Adjacency Arrow Tail 
#Latents #Edges #Samples Alg. Runs Time Prec. Rec. Prec. Rec. Prec. Rec. 
50 1000 200 GFCI 116 4.776s 0.98 0.81 0.96 0.70 0.78 0.77 

RFCI 116 0.274s 0.77 0.71 0.37 0.56 0.50 0.26 

uRFCI 116 1.858s 0.77 0.71 0.37 0.56 0.50 0.26 

FCI+ 116 3.007s 0.77 0.71 0.37 0.56 0.50 0.26 

50 1000 2000 GFCI 116 5.739s 1.00 0.94 0.98 0.88 0.86 0.96 

RFCI 116 0.387s 0.74 0.93 0.40 0.88 0.60 0.69 

uRFCI 116 2.216s 0.74 0.93 0.40 0.88 0.60 0.69 

FCI+ 116 4.112s 0.74 0.93 0.40 0.88 0.60 0.69 

200 1000 200 GFCI 116 2.795s 0.98 0.48 0.95 0.29 0.50 0.53 

RFCI 116 0.171s 0.70 0.45 0.35 0.29 0.39 0.17 

uRFCI 116 1.494s 0.70 0.45 0.35 0.29 0.39 0.17 

FCI+ 116 2.109s 0.70 0.45 0.35 0.29 0.39 0.17 

200 1000 2000 GFCI 116 4.981s 1.00 0.69 0.95 0.52 0.41 0.83 

RFCI 116 0.319s 0.71 0.71 0.40 0.59 0.42 0.52 

uRFCI 116 2.051s 0.71 0.70 0.40 0.59 0.42 0.52 

FCI+ 116 3.268s 0.71 0.71 0.40 0.59 0.42 0.52 

50 2000 200 GFCI 111 11.328s 0.98 0.78 0.96 0.70 0.84 0.81 

RFCI 111 0.678s 0.95 0.50 0.55 0.40 0.64 0.18 

uRFCI 111 2.439s 0.95 0.49 0.55 0.40 0.64 0.18 

FCI+ 111 4.136s 0.95 0.50 0.55 0.40 0.64 0.18 

50 2000 2000 GFCI 111 15.273s 1.00 0.88 0.98 0.82 0.92 0.93 

RFCI 111 3.14s 0.96 0.79 0.59 0.73 0.62 0.47 

uRFCI 111 5.877s 0.97 0.78 0.60 0.72 0.62 0.47 

FCI+ 111 8.856 0.96 0.79 0.59 0.73 0.62 0.47 

200 2000 200 GFCI 104 8.217s 0.97 0.42 0.94 0.28 0.70 0.62 

RFCI 104 0.466s 0.94 0.27 0.55 0.18 0.61 0.13 

uRFCI 104 1.907s 0.94 0.27 0.55 0.17 0.61 0.13 

FCI+ 104 2.851s 0.94 0.27 0.55 0.18 0.61 0.13 

200 2000 2000 GFCI 104 19.375s 0.99 0.53 0.96 0.40 0.71 0.78 

RFCI 104 2.596s 0.96 0.49 0.61 0.39 0.58 0.34 

uRFCI 104 5.979s 0.96 0.48 0.61 0.38 0.58 0.35 

FCI+ 104 7.066s 0.96 0.49 0.61 0.39 0.58 0.35 
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Table 2. This table lists the average running time and the average precision (prec.) and recall 
(rec.) for the different accuracy measurements for every algorithm in every parameterization 

with 1000 variables and  = 0.01. The bold values represent the best value in that column for 
that parameterization. 

DAG  o–o o   
#Latents #Edges #Samples Alg. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. 
50 1000 200 GFCI 0.83 0.82 0.92 0.71 0.78 0.77 0.76 0.02 

RFCI 0.61 0.30 0.42 0.22 0.50 0.26 0.02 0.02 

uRFCI 0.61 0.31 0.41 0.22 0.50 0.26 0.02 0.02 

FCI+ 0.61 0.30 0.41 0.22 0.50 0.26 0.02 0.02 

50 1000 2000 GFCI 0.98 0.96 0.99 0.90 0.86 0.96 0.74 0.33 

RFCI 0.94 0.35 0.65 0.38 0.60 0.69 0.04 0.07 

uRFCI 0.94 0.36 0.65 0.38 0.60 0.69 0.04 0.07 

FCI+ 0.94 0.35 0.65 0.38 0.60 0.69 0.04 0.07 

200 1000 200 GFCI 0.68 0.72 0.83 0.41 0.50 0.54 0.85 0.01 

RFCI 0.56 0.27 0.38 0.15 0.39 0.17 0.07 0.05 

uRFCI 0.55 0.27 0.38 0.15 0.39 0.17 0.07 0.05 

FCI+ 0.56 0.27 0.38 0.15 0.39 0.17 0.07 0.05 

200 1000 2000 GFCI 0.90 0.85 0.94 0.62 0.41 0.83 0.68 0.14 

RFCI 0.89 0.25 0.59 0.23 0.42 0.52 0.14 0.17 

uRFCI 0.89 0.25 0.59 0.23 0.42 0.52 0.14 0.17 

FCI+ 0.89 0.25 0.59 0.23 0.42 0.52 0.14 0.17 

50 2000 200 GFCI 0.80 0.76 0.89 0.69 0.84 0.82 0.50 0.01 

RFCI 0.35 0.20 0.41 0.11 0.64 0.18 0.02 0.04 

uRFCI 0.35 0.20 0.41 0.11 0.64 0.18 0.02 0.04 

FCI+ 0.35 0.20 0.41 0.11 0.64 0.19 0.02 0.04 

50 2000 2000 GFCI 0.97 0.93 0.98 0.86 0.92 0.93 0.69 0.16 

RFCI 0.87 0.16 0.74 0.16 0.62 0.47 0.04 0.18 

uRFCI 0.86 0.16 0.74 0.16 0.62 0.48 0.04 0.17 

FCI+ 0.87 0.16 0.74 0.16 0.62 0.47 0.04 0.18 

200 2000 200 GFCI 0.66 0.68 0.81 0.41 0.70 0.63 0.72 0.01 

RFCI 0.31 0.19 0.38 0.07 0.61 0.13 0.07 0.03 

uRFCI 0.31 0.19 0.38 0.07 0.61 0.13 0.07 0.03 

FCI+ 0.31 0.19 0.38 0.07 0.61 0.13 0.07 0.03 

200 2000 2000 GFCI 0.89 0.79 0.94 0.54 0.81 0.78 0.72 0.08 

RFCI 0.78 0.12 0.69 0.09 0.58 0.35 0.16 0.14 

uRFCI 0.77 0.12 0.70 0.09 0.58 0.35 0.15 0.13 

FCI+ 0.78 0.12 0.69 0.09 0.58 0.34 0.16 0.14 
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Appendix: 
An Introduction to PAGs 

 
Peter Spirtes 

 
The output of the FCI4 algorithm [Spirtes, 2001] is a partial ancestral graph (PAG), which is a 
graphical object that represents a set of causal Bayesian networks (CBNs) that cannot be 
distinguished by the algorithm.5 Suppose we have a set of cases that were generated by 
random sampling from some CBN. Under the assumptions that FCI makes, in the large sample 
limit of the number of cases, the PAG returned by FCI is guaranteed to include the CBN that 
generated the data. 
 
An example of a PAG is shown in Error! Reference source not found.. This PAG represents 
the pair of CBNs in Error! Reference source not found.a and 1b (where measured variables 
are in boxes and unmeasured variables are in ovals), as well as an infinite number of other 
CBNs that may have an arbitrarily large set of unmeasured confounders. Despite the fact that 
there are important differences between the CBNs in Error! Reference source not found.a 
and 1b  (e.g., there is an unmeasured confounder of X1 and X2 in Error! Reference source not 
found.b but not in Error! Reference source not found.a), they share a number of important 
features in common (e.g., in both CBNs, X2 is a direct cause of X6, there is no unmeasured 
confounder of X2 and X6, and X6 is not a cause6 of X2). It can be shown that every CBN that a 
PAG represents shares certain features in common. The features that all CBNs represented by 
a PAG share in common can be read off of the output PAG according to the rules described 
next.  
 

There are 4 kinds of edges that occur in a PAG: A  B, A o B, A o–o B, and   A  B. The 
edges indicate what the CBNs represented by the PAG have in common. A description of the 
meaning of each edge in a PAG is given in  
 
 

 

 
 
 
Table A3. 
 
 
 
 

 

                                                
4 The results in this document also hold for the FCI+ [Claassen, 2013] and GFCI [Ogarrio, 2016] algorithms; for 

simplicity, we will just refer to the FCI algorithm in the remainder of the document. The RFCI algorithm [Colombo, 
2012] outputs a slight modification of a PAG. The kind of PAG described here is actually a special case of a more 
general kind of PAG, where here we assume that there is no selection bias [Spirtes, 1999; Zhang, 2008]. 

5 In the Gaussian and multinomial cases, the CBNs represented by a PAG cannot be distinguished by any algorithm 
without further assumptions. 

6 The word “cause” is used in this document to denote a cause that is either a direct or indirect, relative to the 
measured variables. For example, in Figure 1a, X1 is a direct cause of X2 and an indirect cause of X6.  
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Table A3: Types of edges in a PAG. 

Edge type Relationships that are present Relationships that are absent 

A  B A is a cause of B.  
It may be a direct or indirect cause 
that may include other measured 
variables. Also, there may be an 
unmeasured confounder of A and 
B. 

B is not a cause of A. 

 

A  B There is an unmeasured variable 
(call it L) that is a cause of A and B. 
There may be measured variables 
along the causal pathway from L to 
A or from L to B. 

A is not a cause of B.  

B is not a cause of A. 

A o B Either A is a cause of B, or there is 
an unmeasured variable that is a 
cause of A and B, or both. 

B is not a cause of A. 

A o–o B Exactly one of the following holds: 
(a) A is a cause of B, or (b) B is a 
cause of A, or (c) there is an 
unmeasured variable that is a 
cause of A and B, or (d) both a and 
c, or (e) both b and c.  

 

 
Table A1 is sufficient to understand the basic meaning of edge types in PAGs. Nonetheless, it 
can be helpful to know the following additional perspective on the information encoded by 
PAGs. Each edge has two endpoints, one on the A side, and one on the B side.  For example   

A  B has a tail at the A end, and an arrowhead at the B end. Altogether, there are three kinds 
of edge endpoints: a tail "–", an arrowhead ">", and a "o." Note that some kinds of combinations 
of endpoints never occur; for example, A o– B never occurs. As a mnemonic device, the basic 
meaning of each kind of edge can be derived from three simple rules that explain what the 
meaning of each kind of endpoint is. A tail "–" at the A end of an edge between A and B means 
"A is a cause of B"; an arrowhead ">" at the A end of an edge between A and B means "A is not 
a cause of B"; and a circle "o" at the A end of an edge between A and B means "can't tell 

whether or not A is a cause of B". For example A  B means that A is a cause of B, and that B 
is not a cause of A in all of the CBNs represented by the PAG.
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The PAG in Error! Reference source not found. shows examples of each type of edge, and 
the CBNs in Error! Reference source not found. show some examples of what kinds of CBNs 
can be represented by that PAG.  
 

 
                                      (a)                                                   (b) 

Figure 1. Two CBNs that FCI (as well as FCI+, GFCI, and RFCI) cannot distinguish. 

 
Figure 2. The PAG that represents the CBNs in both Figures 1a and 1b. 
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