
  
 

Greedy Fast Causal Interference (GFCI) Algorithm for Discrete 
Variables 
 
This document provides a brief overview of the GFCI algorithm, focusing on a version of GFCI 
that works with discrete variables, which is called GFCI-discrete (GFCId).   
 
 
Purpose 
 
GFCId is an algorithm that takes as input a dataset of discrete variables and has two phases. 
The first phase greedily searches over selected causal Bayesian network (CBN) structures1 
(models), and outputs the highest scoring model it finds under the assumption that there are no 
unmeasured confounders and selection bias. This output is then input into a slight modification 
of the Fast Causal Inference (FCI) algorithm, which post-processes the output to produce a 
representation of a set of models that may include unmeasured confounders. The model that 
GFCId returns serves as a data-supported hypothesis about causal relationships that exist 
among the variables in the dataset. Such models are intended to help scientists form 
hypotheses and guide the design of experiments to investigate these hypotheses. 
 
Methodological Approach 
 
The first phase of GFCI runs FGES, which is an optimized and parallelized version [Ramsey, 
2015] of an algorithm developed by Meek [Meek, 1997] called the Greedy Equivalence Search 
(GES). GES outputs a set of models that do not contain unmeasured confounders or selection 
bias. The algorithm was further developed and studied by Chickering [Chickering, 2002]. GES is 
a Bayesian algorithm that heuristically searches the space of CBNs and returns the model with 
highest score it finds. In particular, GES starts its search with the empty graph. It then performs 
a forward stepping search in which edges are added between nodes in order to increase the 
Bayesian score. This process continues until no single edge addition increases the score. 
Finally, it performs a backward stepping search that removes edges until no single edge 
removal can increase the score. FGES uses the BDeu2 scoring measure, which is described in 
detail in [Heckerman, 1995].  
 
The second phase of GFCI uses the output of FGS as input to a slight modification of the Fast 
Causal Inference (FCI) algorithm, which outputs a representation of a set of models that may 
contain unmeasured confounders. The FCI algorithm was developed by Spirtes, Glymour, and 
Scheines [Spirtes et al. 1993] and has two phases. FCI starts from an undirected graph that 
contains a superset of the adjacencies in its final output (in the case of GFCI the adjacencies in 
the output of the FGES phase), and then searches for conditional independence relations 
between pairs of variables that are adjacent; if it finds a conditioning set that makes a pair of 
adjacent variables independent, it removes the adjacency. After the adjacency phase, FCI uses 
properties of the conditioning sets that led to the removal of edges in order to orient as much as 
possible the remaining adjacencies. In the GFCI version of FCI, it also supplements the 

                                                 
1 A CBN structure is a directed acyclic graph in which nodes represent variables and arcs represent direct causation 
among the nodes, where the meaning of direct is relative to the nodes in the CBN. For further information about 
CBNs, see [Spirtes, 2010; Lagani, 2016; Pearl 2016].  
2 BDeu stands for Bayesian Dirichlet likelihood equivalence and uniform. It is based on assuming a Dirichlet 
parameter prior probability and a multinomial likelihood. It uses Dirichlet parameter priors that guarantee that CBNs 
that represent the same dependence and independence relationships among the variables (by way of d-separation) 
are assigned the same score. 



  
 

orientations found by using conditional independence tests with some (but not all) of the 
orientations that were found in the output of the FGES phase to orient edges in its output.  
 
 
Input Data and Parameters 
 
GFCId has the following requirements for data input: 
 

• the (training) data are in a table in which columns represent variables, rows represent 
samples, and the value of each variable in a sample is discrete. 

• the first row of the table lists the variable names, in order and unique; the data and 
variable names are separated by a delimiter (default: tab). 

• no values for any samples are missing. 
 

 
GFCId takes the following parameters, which modify the behavior of the algorithm: 
 

• max-degree - The maximum degree of any node in the graph.  Smaller values will 
reduce search time. The default is 100, which is very large. 

• max-path-length - The maximum length for any discriminating path.  Limiting path length 
will reduce search time.  The default is -1 indicating unlimited path lengths. 

• faithfulness-assumed - Using this flag indicates that (one edge) faithfulness should be 
assumed.  Simulation results indicate that assuming faithfulness has little or no negative 
effect on precision-recall performance and leads to a marked decrease in runtime. The 
default is that faithfulness-assumed is set to true. 

• structure-prior - For each node in a CBN, it provides the following prior probability that 
the node has a given set of parents: 

 
 

 
where v is the number of variables in the CBN, p is the number of parents of a given 
child node in a particular CBN, and e is a global parameter that is approximately equal to 
the expected number of parents of the nodes in the CBN. By default we use e = 1. The 
structure prior of an entire network is equal to the product over the structure priors of 
each node in the network.   

• sample-prior - a real valued parameter that specifies the parameter (probability) priors in 
the CBNs searched by GFCId. GFCId uses the BDeu scoring measure, for which the 
expectations of the prior probabilities are uniform. The sample-prior indicates how 
confident we are that these expectations are indeed uniform; the larger the sample-prior, 
the more confident we are. By default, sample-prior = 1, which reflects weak confidence 
that the probabilities in the data-generating CBN are uniform; such weak parameter 
priors allow the data to more strongly influence the CBN that is found by GFCId search. 

• knowledge - the user may specify background knowledge by providing a file that 
describes variable precedence and required and/or forbidden edges in the CBN 
structure.  By default, the algorithm assumes no prior knowledge about the CBN 
structure.  The format of the prior knowledge file can be found 
at https://bd2kccd.github.io/docs/causal-cmd/ under Sample Prior Knowledge File. 
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• exclude-variables - the user may specify which variables to exclude from the dataset by 
using this switch to point to a file that contains the name of a variable in each row. 

• thread - by default the algorithm will run in a parallel fashion using as many threads as 
are needed and available on the system.  The user has the option to specify a smaller 
number of threads. 

• alpha – the significance level of the independence tests performed by GFCI. The default 
is 0.01. 
 

 
Output 
 
GFCId outputs a set of CBNs represented by a graphical object called a PAG [Spirtes et al. 
2000, Zhang 2008], which is a generalization of a pattern, and represents a set of 
indistinguishable CBNs which may contain unmeasured confounders. Each CBN represented 
by the output PAG entails (as closely as the algorithm could determine) the set of conditional 
independence relations judged to hold in the dataset. The appendix provides an introduction to 
PAGs and how to interpret them causally. 
 
Algorithmic Assumptions 
 
This section describes a sufficient set of assumptions for the application of GFCId to achieve 
the guarantees described in the next section. While the pattern output by GFCId may still 
include correct edges (and perhaps many correct edges) even if one or more of these 
assumptions are violated, there are no theoretical guarantees it will do so. 
 
A sufficient set of conditions for recovering the causal structure of the data-generating process 
in the large sample limit (i.e., as the sample size grows without bound) is as follows: Assume 
that the causal process generating the data D given to GFCId is accurately modeled by a CBN 
containing only discrete variables, some of which may not be measured, which we call G. 
Assume that each variable (node) in G is a function of its parents that is modeled by a 
multinomial probability distribution. These conditions are sufficient to recover the causal 
structure. 
 
While the above procedure is simple, it includes several assumptions that may not be obvious. 
Key among them are the following: 
 

• cases (samples) in the data D are independent and identically distributed. 
• the causal Markov condition holds [Spirtes, 2010]. This condition states that a variable is 

independent of its non-effects, given its direct causes (parents). It expresses a form of 
local causality.  

• the causal faithfulness condition holds with probability 1 [Spirtes, 2010]. This condition 
states that all the independence relationships among the measured variables are implied 
by the causal Markov condition.  

• there is no selection bias. This means that the chance a case (sample) was selected 
from the population for inclusion in dataset D did not depend on the values of any of the 
measured variables in the data. 

• there are no feedback cycles among the measured variables. Extensions to CBNs, such 
as causal Dynamic Bayesian Networks (DBNs) [Neapolitan, 2003], do allow feedback 
cycles, but they are not currently implemented in GFCId. 

 



  
 

Structure Learning Performance Guarantees 
 
If the assumptions in the previous section hold, then in the large sample limit, the CBN structure 
output by GFCId will contain an edge of one of four kinds between X and Y if and only if X and Y 
are not independent conditional on any subset of the other measured variables of less than or 
equal to a specified size. In addition, there is (1) an arc X  Y if and only if X directly or 
indirectly causes Y, and Y does not directly or indirectly cause X; (2) an edge X ↔ Y if and only 
if X is not a direct or indirect cause of Y and Y is not a direct or indirect cause of X (which can 
only occur if there are latent confounders of X and some other variable or Y and some other 
variable; (3) an edge X o→ Y only if Y is not a direct or indirect cause of X, but X may or may 
not be an indirect cause of Y; (4) an edge X o–o Y indicates that X and Y are dependent no 
matter what subset of observed variables is conditioned on, but contains no orientation 
information (X may be a direct or indirect cause of Y, and Y may be an indirect cause of X, or 
there may be a latent common cause of X and Y.) 
 
Practice Dataset 
 
We used the CBN shown in Figure 1 and Table 1 to generate the simulated data shown in Table 
2. The user may wish to apply GFCId (with an alpha value of 0.01, the sample prior set to 5, and 
the structure prior set to 1) to the dataset in Table 2 and verify that the CBN structure obtained 
is the one shown in Figure 1.   
 
 

 
Figure 1. The CBN structure used to generated the practice dataset. X1-X4 are measured 
variables and L1 is a latent variable. 
 
 
Table 1. Probabilities of the CBN used to generate the practice dataset.  All variables are 
Boolean, represented by a value of 0 or 1. 
 

P(L1=0) 0.4 
P(X1=0) 0.6 
P(X4=0) 0.5 
P(X2=0|L1=0, X1=0) 0.1 
P(X2=0|L1=0, X1=1) 0.3 
P(X2=0|L1=1, X1=0) 0.4 
P(X2=0|L1=1, X1=1) 0.8 
P(X3=0|L1=0, X4=0) 0.1 
P(X3=0|L1=0, X4=1) 0.4 
P(X3=0|L1=1, X4=0) 0.3 



  
 

P(X3=0|L1=1, X4=1) 0.8 
 
Table 2. The practice dataset generated from the network structure and parameters in Figure 1 
and Table 1.  The MULT column indicates how many instances of a given row we provided to 
the GFCId algorithm. 

X1 X2 X3 X4 Mult 
0 0 0 0 151 
0 0 0 1 370 
0 0 1 0 320 
0 0 1 1 140 
0 1 0 0 489 
0 1 0 1 1009 
0 1 1 0 1308 
0 1 1 1 782 
1 0 0 0 284 
1 0 0 1 665 
1 0 1 0 624 
1 0 1 1 309 
1 1 0 0 106 
1 1 0 1 233 
1 1 1 0 425 
1 1 1 1 285 
        total:           7,500 
 
Performance on Simulated Data 
We evaluated the performance of GFCId on additional simulated data using the Tetrad data 
simulator (Tetrad, 2016). We first created a random CBN with a given number of nodes and 
edges, which we call CBNgen. The directed acyclic graph of CBNgen was generated by fixing the 
number of vertices at 100, and then randomly adding 200 edges, as long as the added edges 
did not create a cycle. We then randomly sampled the distribution defined by CBNgen to 
generate a set of training data D. We provided that data to GFCId to obtain the PAG that it 
output, which we call Pout. We then derived the PAG of CBNgen, which we call Pgen. Thus, both 
Pgen and Pout  are PAGs. We compared Pgen with Pout to derive the following statistics:  
 
AP = Adjacency Precision 
AR = Adjacency Recall 
AHP = Arrowhead precision 
AHR = Arrowhead recall 
TP = Tail precision 
TR = Tail recall 
SHD = Structural Hamming Distance 
Time = Elapsed Time in Seconds 
  
Two nodes are considered to be adjacent if they have any edge type between them. Adjacency 
recall is the fraction of pairs of variables adjacent in Pgen that are also adjacent in Pout. 
Adjacency precision is the fraction of pairs of variables adjacent in Pout that are also adjacent in 
Pgen. Arrowhead recall is the fraction of “>” that appear in Pgen that also appear in Pout, and 
arrowhead precision is the fraction of “>” in Pout that also appear in Pgen. Tail precision and tail 
recall are defined analogously for the “–“ endpoint type. The Structural Hamming Distance is the 



  
 

number of edges that would need to be changed to transform Pout into Pgen. U is a statistic that 
emphasizes precision over recall, which would be the case for many applications: It is defined 
as adjacency precision + arrowhead precision + tail precision + 0.5 * (adjacency recall + 
arrowhead recall + tail recall). We recorded the CPU time in seconds that GFCId took to derive 
Pout when using a MacBook Pro with 16 gigabytes of memory and 4 processors. All of the 
statistics in each table are averages over 10 repeats of the process just described, where each 
repeat is generally a different randomly generated CBN. We evaluated the following three 
algorithms: 
 
GFCId: Greedy Fast Causal Inference (discrete) using a BDeu score in stage 1 and the Chi 
Square test in stage 2 
RFCI: Really Fast Causal Inference using a Chi Square test 
FCI: Fast Causal Inference using a Chi Square test 
 
For all three algorithms, alpha was set to 0.01. For GFCId, max-degree was set to 4, the sample 
prior was set to 1, and the structure prior was set to 1.  
 
FCI and RFCI are algorithms with assumptions, inputs, and outputs similar to GFCId, but are 
completely constraint-based algorithms. In all 6 simulations that we ran, GFCId performed better 
overall than did FCI and RFCI. In the tables below, the algorithms are ordered by the value of 
their U statistic.  
 
Tables 3-5 show results for a data-generating CBN with 100 measured variables, 15 latent 
variables, an average node degree of four, 200 edges, and variables that had either 2 or 3 
categories.    
 
Table 3. Sample size 100 
Alg AP AR AHP AHR TP TR SHD Time U 
GFCId 0.93 0.14 0.52 0.008 0.27 0.003 0.336.50 0.10 0.30 
RFCI 0.85 0.14 0.23 0.03 0.00 0.00 0.134.50 0.14 0.19 
FCI 0.74 0.16 0.23 0.04 0.00 0.00 0.134.80 0.25 0.18 
 
Table 4. Sample size 500 
Alg AP AR AHP AHR TP TR SHD Time U 
GFCId 0.97 0.31 0.92 0.09 0.79 0.05 131.40 0.18 0.48 
RFCI 0.95 0.35 0.39 0.21 0.31 0.02 115.50 0.41 0.32 
FCI 0.92 0.36 0.39 0.23 0.29 0.01 113.50 0.68 0.32 
 
Table 5. Sample size 1000 
Alg AP AR AHP AHR TP TR SHD Time U 
GFCId 0.96 0.37 0.89 0.23 0.65 0.18 1082.30 3.17 0.48 
RFCI 0.90 0.40 0.42 0.31 0.35 0.02 966.70 58.15 0.34 
FCI 0.86 0.41 0.41 0.32 0.38 0.03 959.70 51.97 0.34 
 
  



  
 

Tables 6-8 show results for a data-generating CBN with 1000 measured variables, 150 latent 
variables, an average node degree of four, 2000 edges, and variables that had either 2 or 3 
categories.    
 
Table 6. Sample size 100 
Alg AP AR AHP AHR TP TR SHD Time U 
GFCId 0.94 0.09 0.62 0.003 0.22 0.0003 1479.50 0.81 0.30 
RFCI 0.81 0.11 0.22 0.02 0.10 .0001 1436.30 8.66 0.20 
FCI 0.54 0.13 0.19 0.04 0.22 0.0006 1447.00 10.91 0.17 
 
Table 7. Sample size 500 
Alg AP AR AHP AHR TP TR SHD Time U 
GFCId 0.96 0.27 0.91 0.10 0.70 0.06 1294.00 1.78 0.46 
RFCI 0.87 0.31 0.38 0.19 0.35 0.01 1144.10 29.90 0.31 
FCI 0.79 0.32 0.36 0.22 0.33 0.01 1129.0 27.58 0.29 
 
Table 8. Sample size 1000 
Alg AP AR AHP AHR TP TR SHD Time U 
GFCId 0.96 0.37 0.89 0.23 0.65 0.18 1082.30 3.17 0.48 
RFCI 0.90 0.40 0.42 0.31 0.35 0.02 966.70 58.15 0.34 
FCI 0.86 0.41 0.41 0.32 0.38 0.03 959.70 51.97 0.34 
 
The results in the tables provide benchmarks that may be helpful in estimating the performance 
of GFCId when it is applied to real datasets. We emphasize, however, that the results obtained 
with such simulated data may be better than those obtained with real datasets. 
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Appendix: 
An Introduction to PAGs 

 
Peter Spirtes 

 
The output of the FCI3 algorithm [Spirtes, 2001] is a partial ancestral graph (PAG), which is a 
graphical object that represents a set of causal Bayesian networks (CBNs) that cannot be 
distinguished by the algorithm.4 Suppose we have a set of cases that were generated by 
random sampling from some CBN. Under the assumptions that FCI makes, in the large sample 
limit of the number of cases, the PAG returned by FCI is guaranteed to include the CBN that 
generated the data. 
 
An example of a PAG is shown in Figure A2. This PAG represents the pair of CBNs in Figures 
A1a and A1b (where measured variables are boxes and unmeasured variables are ovals), as 
well as an infinite number of other CBNs that may have an arbitrarily large set of unmeasured 
confounders. Despite the fact that there are important differences between the CBNs in Figures 
A1a and A1b  (e.g., there is an unmeasured confounder of X1 and X2 in Figure A1b but not in 
Figure A1a), they share a number of important features in common (e.g., in both CBNs, X2 is a 
direct cause of X6, there is no unmeasured confounder of X2 and X6, and X6 is not a cause5 of 
X2). It can be shown that every CBN that a PAG represents shares certain features in common. 
The features that all CBNs represented by a PAG share in common can be read off of the 
output PAG according to the rules described next.  
 
There are 4 kinds of edges that occur in a PAG: A → B, A o→ B, A o–o B, and   A ↔ B. The 
edges indicate what the CBNs represented by the PAG have in common. A description of the 
meaning of each edge in a PAG is given in Table A1. 
 
 
 
 

 

 
 

 
 
 
 

                                                 
3 The results in this appendix also hold for the FCI+ [Claassen, 2013] and GFCI [Ogarrio, 2016] algorithms; for 
simplicity, we will just refer to the FCI algorithm in the remainder of the appendix. The RFCI algorithm [Colombo, 
2012] outputs a slight modification of a PAG. The kind of PAG described here is actually a special case of a more 
general kind of PAG, where here we assume that there is no selection bias [Spirtes, 1999; Zhang, 2008]. 
4 In the Gaussian and multinomial cases, the CBNs represented by a PAG cannot be distinguished by any algorithm 
without further assumptions. 

5 The word “cause” is used in this document to denote a cause that is either direct or indirect, relative to the 
measured variables. For example, in Figure A1a, X1 is a direct cause of X2 and an indirect cause of X6.  



  
 

Table A1: Types of edges in a PAG. 
Edge type Relationships that are present Relationships that are absent 
A → B A is a cause of B.  

It may be a direct or indirect cause 
that may include other measured 
variables. Also, there may be an 
unmeasured confounder of A and 
B. 

B is not a cause of A. 
 

A ↔ B There is an unmeasured variable 
(call it L) that is a cause of A and B. 
There may be measured variables 
along the causal pathway from L to 
A or from L to B. 

A is not a cause of B.  
B is not a cause of A. 

A o→ B Either A is a cause of B, or there is 
an unmeasured variable that is a 
cause of A and B, or both. 

B is not a cause of A. 

A o–o B Exactly one of the following holds: 
(a) A is a cause of B, or (b) B is a 
cause of A, or (c) there is an 
unmeasured variable that is a 
cause of A and B, or (d) both a and 
c, or (e) both b and c.  

 

 
Table A1 is sufficient to understand the basic meaning of edge types in PAGs. Nonetheless, it 
can be helpful to know the following additional perspective on the information encoded by 
PAGs. Each edge has two endpoints, one on the A side, and one on the B side.  For example   
A → B has a tail at the A end and an arrowhead at the B end. Altogether, there are three kinds 
of edge endpoints: a tail "–", an arrowhead ">", and a "o." Note that some kinds of combinations 
of endpoints never occur; for example, A o– B never occurs. As a mnemonic device, the basic 
meaning of each kind of edge can be derived from three simple rules that explain what the 
meaning of each kind of endpoint. A tail "–" at the A end of an edge between A and B means "A 
is a cause of B"; an arrowhead ">" at the A end of an edge between A and B means "A is not a 
cause of B"; and a circle "o" at the A end of an edge between A and B means "can't tell whether 
or not A is a cause of B." For example A → B means that A is a cause of B, and that B is not a 
cause of A in all of the CBNs represented by the PAG. 
 
The PAG in Figure A2 shows examples of each type of edge, and the CBNs in Figure A1 show 
some examples of what kinds of CBNs can be represented by that PAG. 



  
 

  
 

 
                                      (a)                                                   (b) 

Figure A1. Two CBNs that FCI (as well as FCI+, GFCI, and RFCI) cannot distinguish. 

 
Figure A2. The PAG that represents the CBNs in both Figures A1a and A1b. 
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