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A Conversation with R.A. Fisher
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Science is about 
causation. Causes 
can only be 
discovered by 
experiment.

So what did you 
study? And what 

did you research?

Physics and 
astronomy. Then 
statistics and 
biology, especially 
evolution.

Say again!?



Continued…
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Very well: Science 
is about causation. 
Causes can only be 
discovered by 
experiment.

So much then for my 
discovery of the 
cause of the motions 
of the planets, and 
the cause of the 
tides.

So much as well for 
my discovery of the 
origin of species.
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I have a proof

Lung Cancer is associated with smoking.
The association can equally be explained 
in three ways:

1. Early undetected cancers cause 
smoking

2. Genetics causes both smoking 
and cancer

3. Smoking causes cancer
The data cannot distinguish these 
explanations.
The argument is quite general: 
Associations cannot distinguish 
cause from effect from joint effects 
of the unobserved



Even Genius Makes Mistakes

Genes

Parents        Smoking Cancer       Job 

Smoking
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Suppose Data:

• Parents Smoking and Smoking are not associated with Job

• Parents Smoking is not associated with Cancer

• Smoking and Cancer are associated

• Parents Smoking and Smoking are associated

• Job and Cancer are associated

Suppose true:
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Suppose Data:

• Parents Smoking and Smoking are not associated with Job

• Parents Smoking is not associated with Cancer

• Smoking and Cancer are associated

• Parents Smoking and Smoking are associated

• Job and Cancer are associated

Then every causal explanation of the data entails that

Something

Smoking Cancer



Another example:

Suppose data were to show:

z X and Y are not associated

z Z is associated with X and Y

z X and Y are associated conditional on a value of Z

z X, Y, Z are associated with R

z X, Y are not associated with R conditional on Z

Then Z is a cause of R and there are no confounding 
common causes of Z and R.
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X
Z           R

Y



George Udney Yule and Regression
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Yule championed multiple regression 

as a means to estimate causal effects.

He was aware of some, but not all, of 

its foibles:

Unmeasured

X    Y

Unmeasured

βxz,y

Z

Although X and Z have no unmeasured 

common cause, and X has no influence 

on Z, regression of Z on X,Y results in a 

non-zero β



Spearman, Thurstone and 

Factor Analysis

z G

z X1 X2 X3 X4…..

Thurstone’s Equivocation:

“Vectors of Mind” = Linear reduction of correlations
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Upshot for the 20
th

Century 

z Causal inferences should not be made from non-
experimental data

z But if you must, use regression

z Or factor analysis

z Or “potential outcomes”

Fear of Search
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Terry Speed: There may be 

better search methods than 

regression, but only regression 

should be used.

http://www.stat.tamu.edu/events/hartleylect/TerrySpeed2.jpg
http://www.stat.tamu.edu/events/hartleylect/TerrySpeed2.jpg


~ 1990: Rethinking: 

z Relationships between causal hypotheses 
and probability hypotheses

z Search 
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Search for causal relations is 

statistical estimation

Hypothesis Space:

Data: A II C , A II B, B II C, A II C | B    

Statistical inference:

A -> B <- C:  
A B C

A 0 1 0

B 0 0 1

C 0 1 0

A B C

A ? ? ?

B ? ? ?

C ? ? ?
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What’s the Difference?

In conventional estimation we are 
estimating a probability distribution—an 
unobserved distribution covering present 
and potential future observations.

In causal estimation, we are estimating 
both a current probability distribution and
the probability distributions that would 
result from various interventions.
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Interventions Change 

Probabilities

X Y

X          Y

X          Y

X Y
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Observed

Force a value on Y; 

distribution of X doesn’t 

change. Dependence of 

Y on X is broken

Force a value on 

X; distribution of Y 

changes



16

First Goal: To estimate whether there are some values 

of other variables C such that some intervention that 

changes the distribution of A will change the distribution 

of B when C variables are forced to have those values.

Secondary Goals: to estimate the signs or strengths of 

effects.

Goals are the same as in Experimental 

Design

A B C

A ? ? ?

B ? ? ?

C ? ? ?



Conventional Statistical 

Estimation Has Assumptions, 

E.G.

z Distribution Family?

z I.I.D Sampling?

z Censored Data?

z Stationary Time Series?

z Variance Known?

z Prior Probabilities?

z Likelihood Function (i.e., the “model”)
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Standards for Statistical 

Estimation Are Standards for 

Search

z Asymptotic convergence to true 
information under explicit assumptions.

z Unbiased (Expected value is the true 
value)

z Finite sample error probabilities.

z Tests of assumptions.

z Robustness to “small” violations of 
assumptions.
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Representation

z Represent causal relations on a collection 
V of variables by directed edges X -> Y

z A directed edge indicates that some 
intervention on X would change the 
distribution of Y if all other variables in V
(that are not effects of X) were held 
constant at some values. 
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What Extra Assumptions Are 

Needed for Causal Inference?

Answer:  Generalizations of principles of 
experimental design:

Markov Condition

Faithfulness Condition
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Experimental Principles

Why do we randomize in experiments?

Because we expect (or hope) that on average 
randomizing X will remove any association between X 
and Y due to common causes of X and Y.

Z

Randomize X Y

And thus, the association (or it’s absence) of X and Y

in the experiment will measure the effect (or it’s

absence) of X on Y.

Why in experiments do we “stratify” values of potential 
confounders, Z, (i.e. arrange subsamples in which Z is constant)? 
One reason: Because we expect that the association of X 
and Y when Z is constant (i.e., conditioned on) will 
measure the effect of X on Y. 
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Experimental Principles: Blinding

When we think Y is an effect of X and we do 
not know whether Z is an effect of Y, and we 
want to know whether X causes Z

X Y Z

z We do not force Y to be constant when we 
randomize X.

z We do not condition on Y when we 
randomize X.

z But if we want to know if there is a direct 
influence of X on Z, we do condition on Y. 
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Generalizations

z Markov: X is independent of all other 
variables (except for effects of X) 
conditional on the direct causes of X.

z Faithfulness: All independencies and 
conditional independencies among 
variables in a system of variables follow 
from the Markov condition for the true 
causal graph of the system.  
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A Flow of Mathematical 

Results Since 1990

z Sufficient conditions for recovering causal information:

z Markov

z Acyclic

z Faithfulness

z I.I.D sampling

z No unrecorded common causes

And a host of alternative sufficient conditions.
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Examples for which  There Are 

Correct Search Procedures

U1        U2       U3        Linearity of X variables

X 1  X2  X3  X4  X5  X6 

X1  X2                          Non-Gaussian

X1 X2  X3                 Linear

U

X1     X2            X3     X4        X1   X2     X3   X4

U1 U2

O1    O2     O3   O4
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The Zen of Search: Don’t Look 

(where you don’t need to)
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Applications
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In flight recalibration    Acid Rain College Dropouts

Lead & IQ            Gene Regulators         Autism Spectrum



Center for Causal Discovery

1. New Algorithms

2. Moving from small discovery problems to 
huge problems

3. Making software easily usable 

4. Training

5. Science Applications:

y Cellular pathways in breast cancer

y ………………………..in lung disease

y Brain processing in normals and autistics
28



Cancer Signaling and Big Data

z Genomic data  
y Somatic mutations
y Somatic copy number 

alterations
y DNA methylation

z Proteomic data
y Quantity of certain 

signaling proteins 
y Chemical modification 

(phosphorylation) of 
proteins

z Transcriptomic data
y mRNA
y miRNA
y lncRNA

Protein (gene)

mutations 

Protei
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Signaling Pathway and Causal 

Network

S1

S2
S3

S4 S6

A1

A2
A3

A5A4
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T5 T6
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Identify associations between 

clinical features, omics and lung 

disease using graphical models 

(undirected)

AJ Sedgewick

Gene, 2014

© 2015 Benos lab / Univ of 

Pittsburgh



Finding the Neural 

Mechanisms in Autism 
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5 Months of Algorithmic 

Progress

Size: 

.(Thanks PSC)

Variable Types:

Mixed categorical and continuous variables

Model Types

Endogenous latent variables: X -> U -> Y
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MGM-Learn method

z Learn undirected mixed graphical model with both 
categorical and continuous variables

z By combining existing algorithms in novel ways.

© 2015 Benos lab / Univ of 

Pittsburgh



Comparison of MGM-Learn flavors 

to other structure learning 

methods

© 2015 Benos lab / Univ of 

Pittsburgh

AJ Sedgewick



Inferring Unobserved Intermediate 

Causes—Between Somatic Gene 

Anomalies and mRNA Transcripts
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Hippocampal Pathways



Identification of Communicating 

Sub-Regions of the Hippocampus
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Distinguishing Autistics by 

Graphical Search with fMRI

39

Predicted Actual

NT AT

NT .92 .01

AT .08 .99



The Big Task for Big Data

z Showing that we can use big biomedical 
data to discover novel, important causal 
relations that can be experimentally 
confirmed.
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