Center for Causal Discovery:

Summer Workshop - 2015

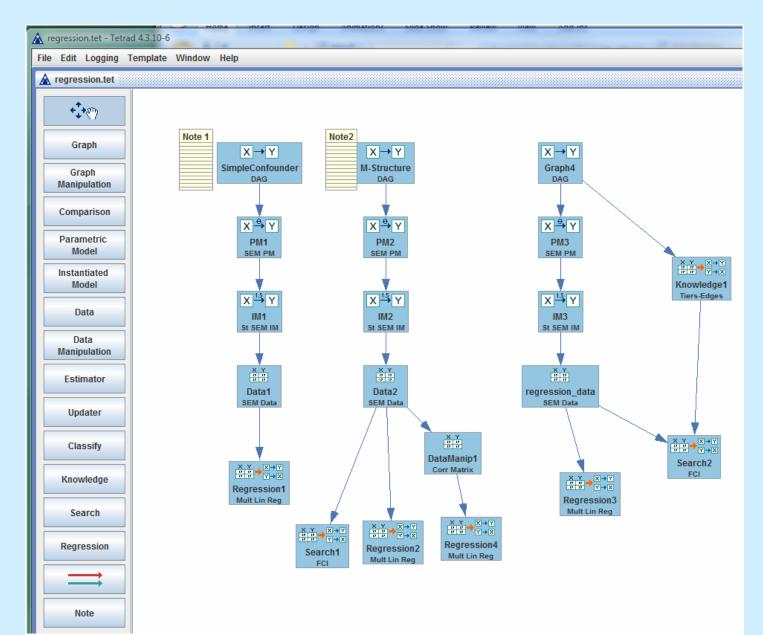
June 8-11, 2015

Carnegie Mellon University

Goals

- 1) Working knowledge of graphical causal models
- 2) Basic working knowledge of Tetrad V
- 3) Basic understanding of search algorithms
- 4) Basic understanding of several applications:
 - a) fMRI
 - b) Lung Disease
 - c) Cancer
 - d) Genetic Regulatory Networks
- 5) Form community of researchers, users, and students interested in causal discovery in biomedical research

Tetrad: Complete Causal Modeling Tool



Tetrad

1) Main website: <u>http://www.phil.cmu.edu/projects/tetrad/</u>

- 2) Download: http://www.phil.cmu.edu/projects/tetrad/current.html
 - a) Previous version you downloaded: tetrad-5.1.0-6
 - b) Newer version with several bug-fixes: tetrad-5.2.1-0
- 3) Data files:

www.phil.cmu.edu/projects/tetrad_download/download/workshop/Data/

Day 1: Graphical Causal Models, Tetrad

- 1. Introduction
 - a) Overview of Graphical Causal Models
 - b) Tetrad
- 2. Representing/Modeling Causal Systems
 - a) Parametric Models
 - b) Instantiated Models
- 3. Estimation, Inference, Updating and Model fit
- 4. Tiny Case Studies: Charity, Lead and IQ

Day 2: Search

- 1. D-separation
- 2. Model Equivalence
- 3. Search Basics (PC, GES)
- 4. Latent Variable Model Search
 - a) FCI
 - b) MIMbuild
- 5. Examples

Day 3: Examples

1. Overviews

- a) fMRI
- b) Cancer
- c) Lung Disease
- d) Genetic Regulatory Networks

2. Extra Issues

- a) Measurement Error
- b) Feedback and Time Series

Day 4: Breakout Sessions

- 1. Morning
 - a) fMRI
 - b) Cancer
 - c) Lung Disease
 - d) Genetic Regulatory Networks
- 2. Afternoon
 - a) Overview of Algorithm Development (Systems Group)
 - b) Group Discussion on Data and Research Problems

Causation and Statistics

Francis Bacon

Udny Yule

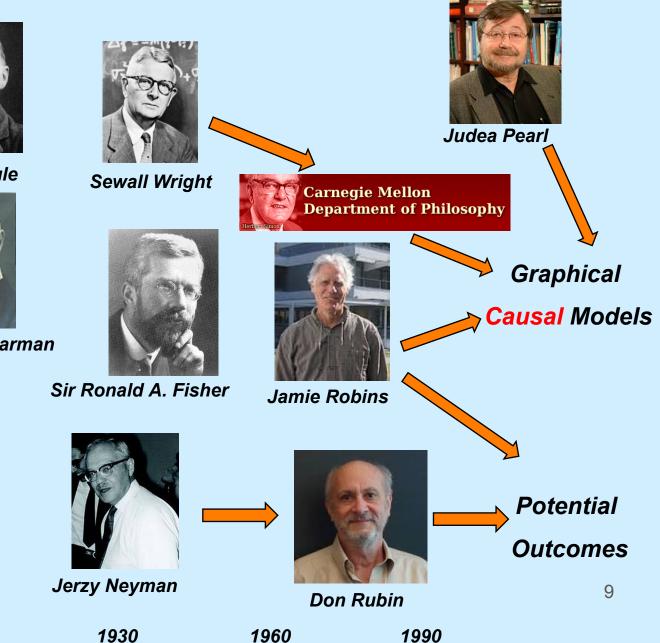
Charles Spearman

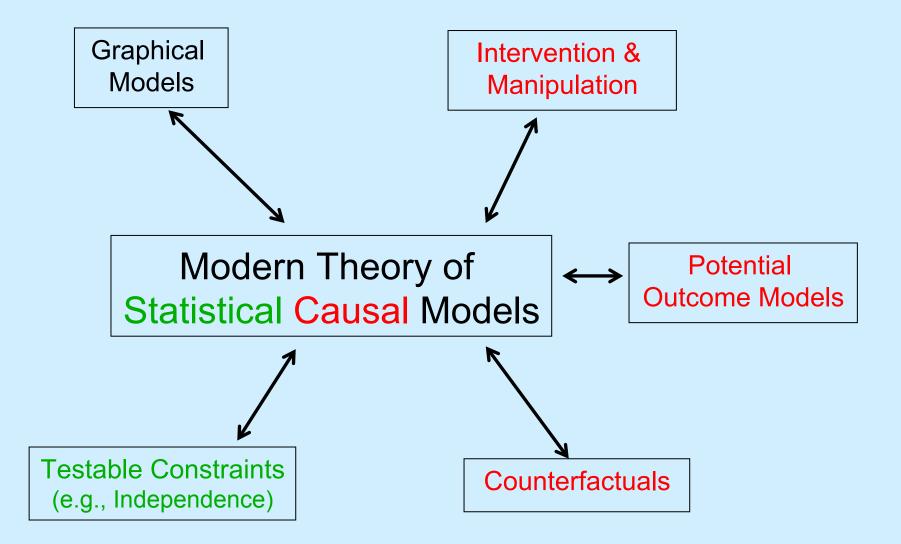
1900

Galileo Galilei

1600

1500





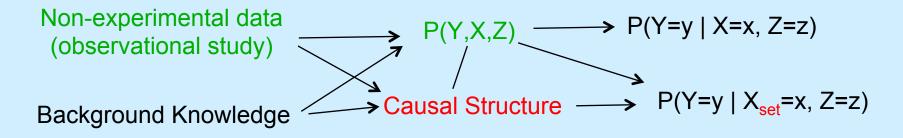
Causal Inference Requires More than Probability

Prediction from Observation ≠ Prediction from Intervention

P(Lung Cancer 1960 = y | Tar-stained fingers 1950 = no) \neq P(Lung Cancer 1960 = y | Tar-stained fingers 1950_{set} = no)

In general: $P(Y=y | X=x, Z=z) \neq P(Y=y | X_{set}=x, Z=z)$

Causal Prediction vs. Statistical Prediction:



Estimation vs. Search

Estimation (Potential Outcomes)

- *Causal Question*: Effect of Zidovudine on Survival among HIV-positive men (Hernan, et al., 2000)
- Problem: confounders (CD4 lymphocyte count) vary over time, and they are dependent on previous treatment with Zidovudine
- *Estimation method discussed*: marginal structural models
- Assumptions:
 - Treatment measured reliably
 - Measured covariates sufficient to capture major sources of confounding
 - Model of treatment given the past is accurate
- *Output*: Effect estimate with confidence intervals

Fundamental Problem: estimation/inference is conditional on the model

Estimation vs. Search

Search (Causal Graphical Models)

- *Causal Question*: which genes regulate flowering in Arbidopsis
- *Problem*: over 25,000 potential genes.
- *Method*: graphical model search
- Assumptions:
 - RNA microarray measurement reasonable proxy for gene expression
 - Causal Markov assumption
 - Etc.
- *Output*: Suggestions for follow-up experiments

Fundamental Problem: model space grows super-exponentially with the number of variables

Causal Search

Causal Search:

- 1. Find/compute *all* the causal models that are indistinguishable given background knowledge and data
- 2. Represent features common to all such models

Multiple Regression is often the *wrong* tool for Causal Search:

Example: Foreign Investment & Democracy

Foreign Investment

Does Foreign Investment in 3rd World Countries inhibit Democracy?

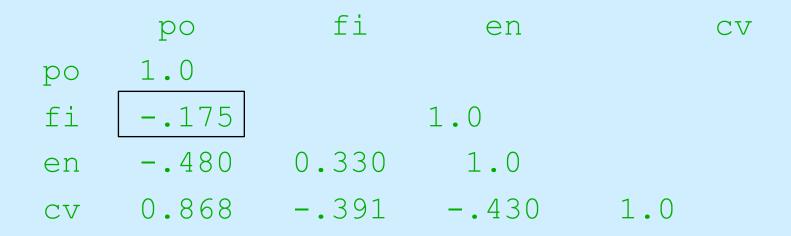
Timberlake, M. and Williams, K. (1984). Dependence, political exclusion, and government repression: Some cross-national evidence. American Sociological Review 49, 141-146.

N = 72

- PO degree of political exclusivity
- CV lack of civil liberties
- EN energy consumption per capita (economic development)
- FI level of foreign investment

Foreign Investment

Correlations



Case Study: Foreign Investment

Regression Results

po =	.227*fi	176*en +	.880*cv
------	---------	----------	---------

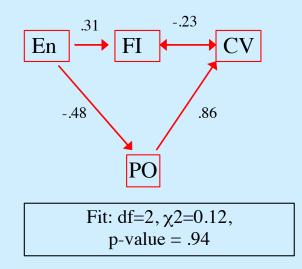
SE	(.058)	(.059)	(.060)
t	3.941	-2.99	14.6
Ρ	.0002	.0044	.0000

Interpretation: foreign investment increases political repression

Case Study: Foreign Investment Alternative Models

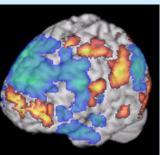


There is no model with testable constraints (df > 0) that is not rejected by the data, in which FI has a positive effect on PO.



A Few Causal Discovery Highlights

fMRI (~44,000 voxels)



Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg

NeuroImage 49 (2010) 1545-1558

Six problems for causal inference from fMRI

J.D. Ramsey ^{a,*}, S.J. Hanson ^b, C. Hanson ^b, Y.O. Halchenko ^b, R.A. Poldrack ^c, C. Glymour ^d artment of Philosophy, Camagie Mellon University, Hitsburgh, Ph 15213 artment of Phychology, Natgers University, Ramba Lah Iga Rosench Center and Departments of Phychology and Neurobology, University of Texas at Austin artment of Philosophy, Caraegie Mellon University, and Parida Institute for Human and Machine Cognition

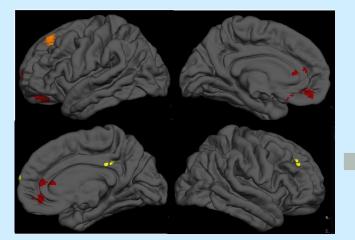
ARTICLE INFO ABSTRACT

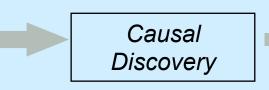
Article history: Received 13 February 2009 Revised 7 August 2009 Accepted 31 August 2009 Available online 9 September 2009

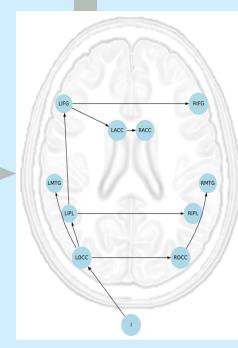
Neuroimaging (e.g. MRRI) data are increasingly used to attempt to identify not only brain (ROIs) that are especially active during perception, cognition, and action, but also the relations among activity in these regions (known as effective connectivity; Fristor vestigations and anatomical and physiological knowledge may somewhat theses, but there often remains a vast space of possible causal structures. T ectivity relations, search methods must accommodate indirect measurements of ar time serie endencies, feedback, multiple subjects possibly varying in identified regions of interest, and unkn ssible location-dependent variations in BOLD response delays. We desc that under these conditions find feed-forward sub-structure characteristic of a group of subjects. The mar under these containons man teed-torward sub-articulte characteristic or a group or subjects. Inter metmode is illustrated with an empirical data set and confirmed with simulations of time series of non-linear, randomly generated, effective connectivities, with feedback, subject to random differences of BOLD eldsys, with regions of interest missing at random for some subjects, measured with noise approximating the signal to noise ratio of the empirical data.

© 2009 Elsevier Inc. All rights

Clark Glymour, Joe Ramsey, Ruben Sanchez CMU







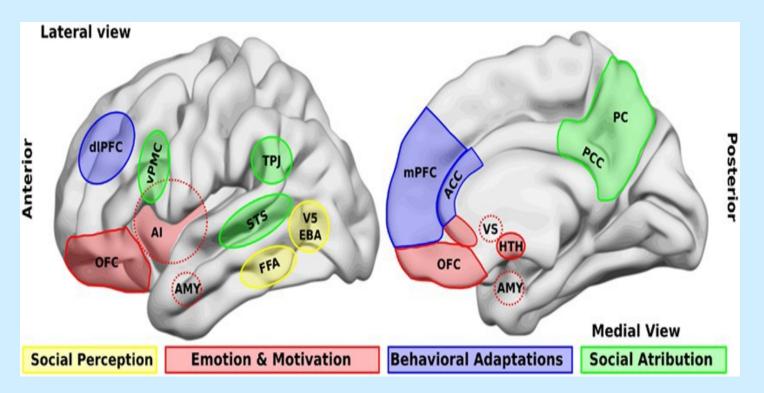
(ROI) ~10-20 Regions of Interest

Autism

Catherine Hanson, Rutgers

ASD vs. NT

Usual Approach: Search for differential recruitment of brain regions

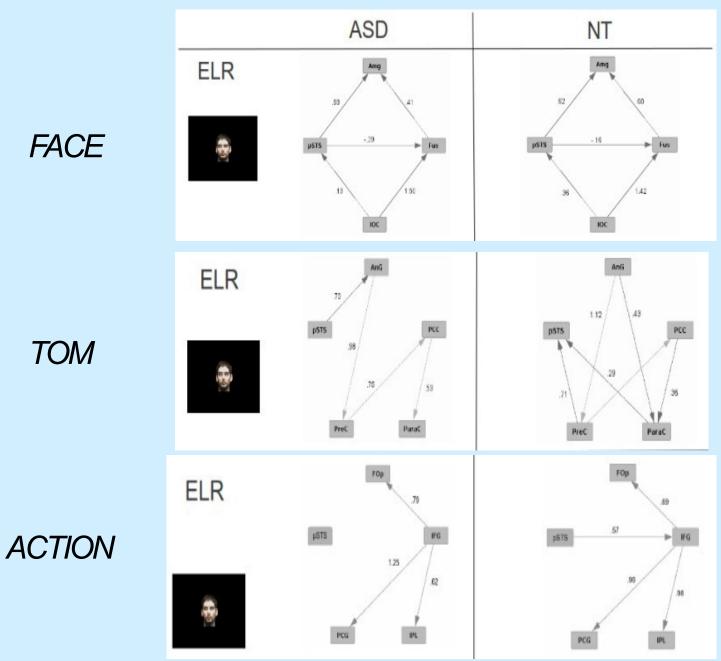


ASD vs. NT

Causal Modeling Approach: Examine connectivity of ROIs

- Face processing network
- Theory of Mind network
- Action understanding network

Results



What was Learned

face processing: ASD ≈ NT

Theory of Mind: ASD ≠ NT

action understanding: ASD ≠ NT when faces involved

Genetic Regulatory Networks

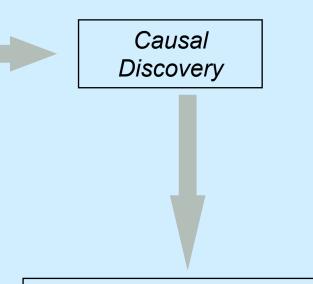
Arbidopsis

Marloes Maathuis ZTH (Zurich)

Genetic Regulatory Networks

Micro-array data ~25,000 variables

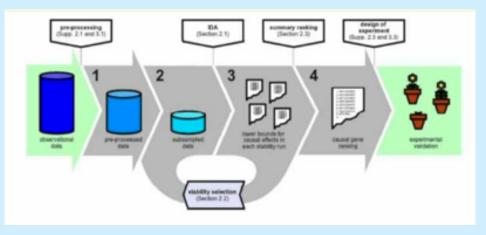




Greenhouse experiments on flowering time

Genetic Regulatory Networks

Which genes affect flowering time in Arabidopsis thaliana? (Stekhoven et al., *Bioinformatics*, 2012)



- ~25,000 genes
- Modification of PC (stability)
- Among 25 genes in final ranking:
 - 5 known regulators of flowering
 - 20 remaining genes:
 - For 13 of 20, seeds available
 - 9 of 13 yielded replicates
 - 4 of 9 affected flowering time
- Other techniques are little better than chance

Other Applications

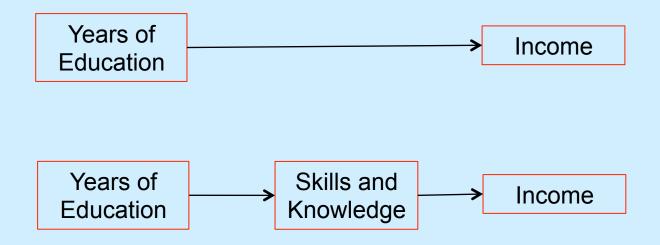
- Educational Research:
 - Online Courses,
 - MOOCs,
 - Cog. Tutors
- Economics:
 - Causes of Meat Prices,
 - Effects of International Trade
- Lead and IQ
- Stress, Depression, Religiosity
- Climate Change Modeling
- The Effects of Welfare Reform
- Etc. !

Representing/Modeling Causal Systems

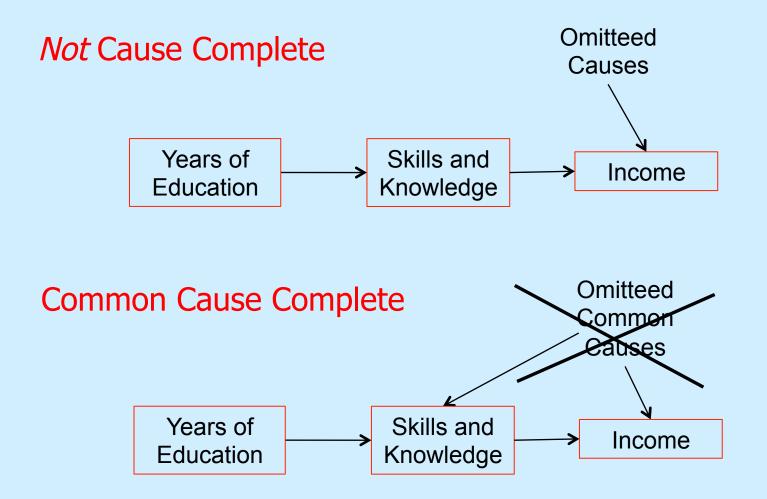
- 1) Causal Graphs
- 2) Parametric Models
 - a) Bayes Nets
 - b) Structural Equation Models
 - c) Generalized SEMs

Causal Graphs

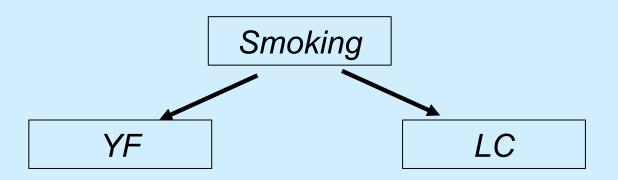
Causal Graph G = {V,E} Each edge $X \rightarrow Y$ represents a direct causal claim: X is a direct cause of Y relative to V



Causal Graphs



Tetrad Demo & Hands-On

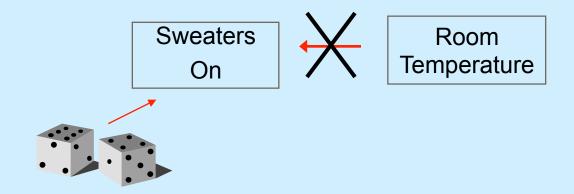


Build and Save two acyclic causal graphs:

- 1) Build the Smoking graph picture above
- 2) Build your own graph with 4 variables

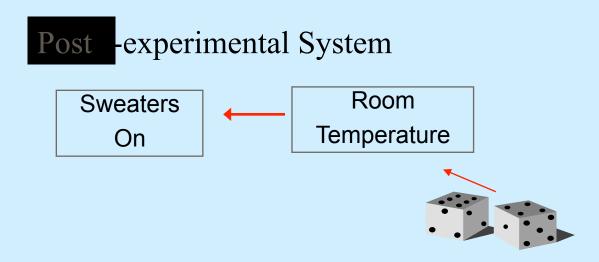
Modeling Ideal Interventions

Interventions on the Effect



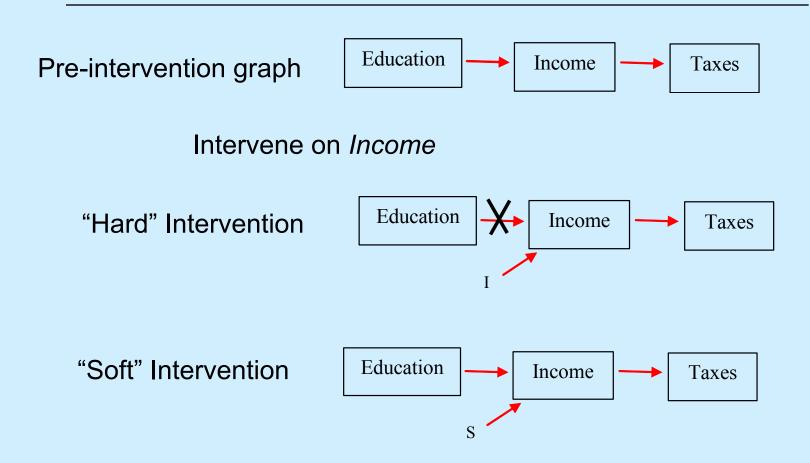
Modeling Ideal Interventions

Interventions on the Cause

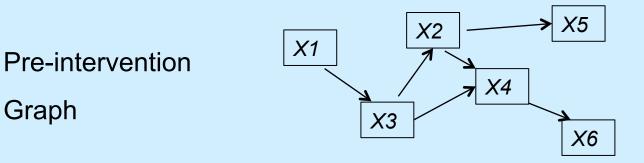


Interventions & Causal Graphs

Model an ideal intervention by adding an "intervention" variable outside the original system as a direct cause of its target.



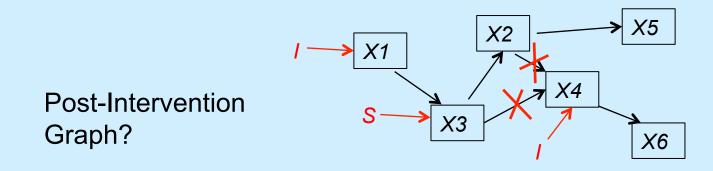
Interventions & Causal Graphs



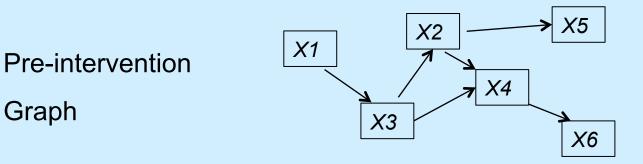
Intervention:

Graph

- hard intervention on both X1, X4 ۲
- Soft intervention on X3



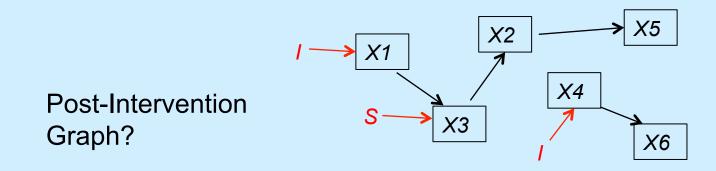
Interventions & Causal Graphs



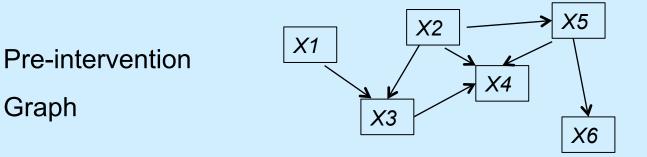
Intervention:

Graph

- hard intervention on both X1, X4 ۲
- Soft intervention on X3



Interventions & Causal Graphs

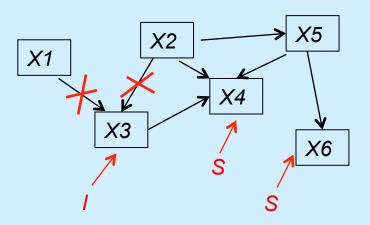


Intervention:

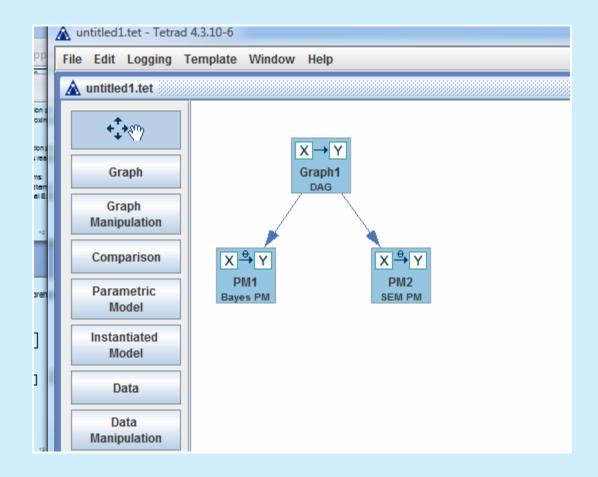
Graph

- hard intervention on X3 •
- Soft interventions on X6, X4 ۲

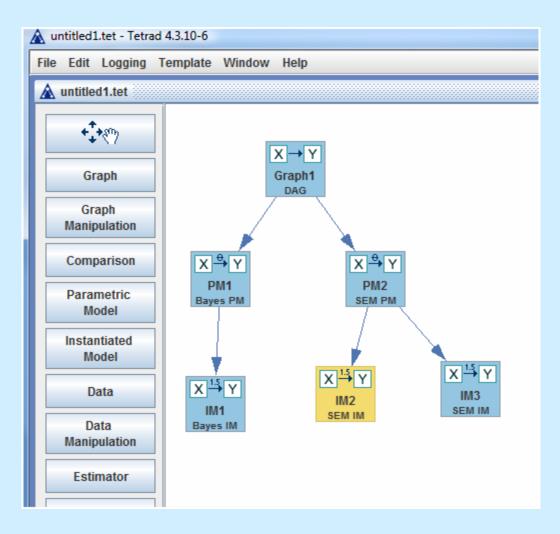
Post-Intervention Graph?

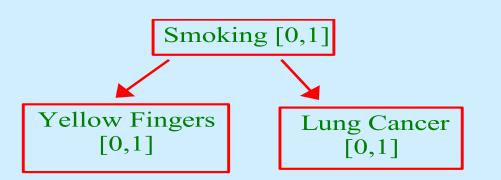


Parametric Models



Instantiated Models



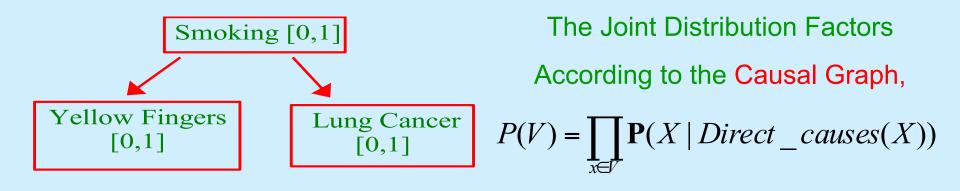


The Joint Distribution Factors

According to the Causal Graph,

$$P(V) = \prod_{x \in V} \mathbf{P}(X \mid Direct_causes(X))$$

P(S,YF,L) = P(S) P(YF | S) P(LC | S)



 $P(S) P(YF | S) P(LC | S) = f(\theta)$

All variables binary [0,1]: $\theta = \{\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \}$

$$P(S = 0) = \theta_{1}$$

$$P(S = 1) = 1 - \theta_{1}$$

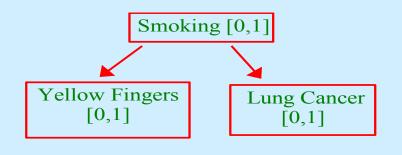
$$P(YF = 0 | S = 0) = \theta_{2}$$

$$P(YF = 1 | S = 0) = 1 - \theta_{2}$$

$$P(YF = 0 | S = 1) = \theta_{3}$$

$$P(YF = 1 | S = 1) = 1 - \theta_{3}$$

 $P(LC = 0 | S = 0) = \theta_4$ $P(LC = 1 | S = 0) = 1 - \theta_4$ $P(LC = 0 | S = 1) = \theta_5$ $P(LC = 1 | S = 1) = 1 - \theta_5$



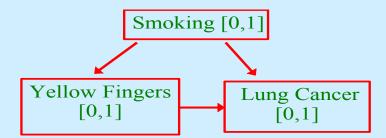
The Joint Distribution Factors

According to the Causal Graph,

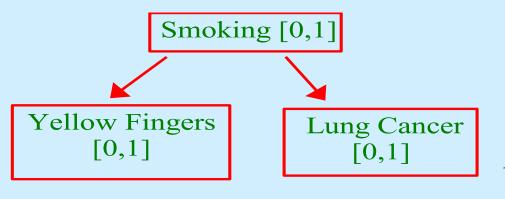
$$P(V) = \prod_{x \in V} \mathbf{P}(X \mid Direct_causes(X))$$

 $\mathsf{P}(\mathsf{S},\mathsf{YF},\mathsf{LC}) = \mathsf{P}(\mathsf{S}) \mathsf{P}(\mathsf{YF} \mid \mathsf{S}) \mathsf{P}(\mathsf{LC} \mid \mathsf{S}) = \mathsf{f}(\theta)$

All variables binary [0,1]: $\theta = \{\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \}$



 $P(S,YF, LC) = P(S) P(YF \mid S) P(LC \mid YF, S) = f(\theta)$ All variables binary [0,1]: $\theta = \{\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6}, \theta_{7}, \}$



The Joint Distribution Factors

According to the Causal Graph,

$$P(V) = \prod_{x \in V} \mathbf{P}(X \mid Direct_causes(X))$$

.95

.05

.80

.20

P(S,YF,L) = P(S) P(YF | S) P(LC | S)

$$P(S = 0) = .7$$

$$P(S = 1) = .3$$

$$P(YF = 0 | S = 0) = .99$$

$$P(YF = 1 | S = 0) = .01$$

$$P(YF = 0 | S = 1) = .20$$

$$P(LC = 0 | S = 0) = .01$$

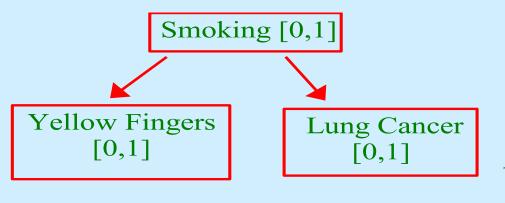
$$P(LC = 0 | S = 1) = .20$$

$$P(LC = 0 | S = 1) = .20$$

$$P(LC = 0 | S = 1) = .20$$

$$P(LC = 1 | S = 1) = .20$$

P(S=1,YF=1, LC=1) = ?



The Joint Distribution Factors

According to the Causal Graph,

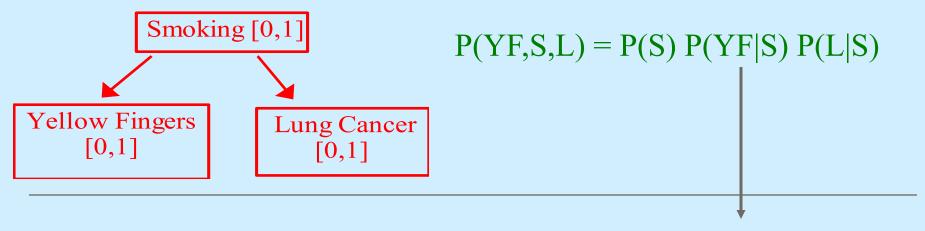
$$P(V) = \prod_{x \in V} \mathbf{P}(X \mid Direct_causes(X))$$

P(S,YF, L) = P(S) P(YF | S) P(LC | S)

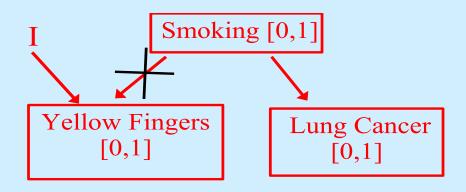
$$P(S = 0) = .7$$
 $P(S = 1) = .3$ $P(YF = 0 | S = 0) = .99$ $P(LC = 0 | S = 0) = .95$ $P(YF = 1 | S = 0) = .01$ $P(LC = 1 | S = 0) = .05$ $P(YF = 0 | S = 1) = .20$ $P(LC = 0 | S = 1) = .80$ $P(YF = 1 | S = 1) = .80$ $P(LC = 1 | S = 1) = .20$

P(S=1,YF=1, LC=1) = P(S=1) P(YF=1 | S=1) P(LC = 1 | S=1)P(S=1,YF=1, LC=1) = .3 * .80 * .20 = .048

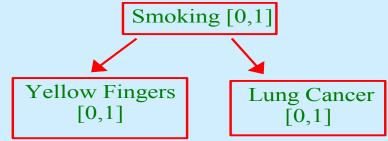
Calculating the effect of a hard interventions



 $P_{m}(YF,S,L) = P(S) P(YF|I) P(L|S)$

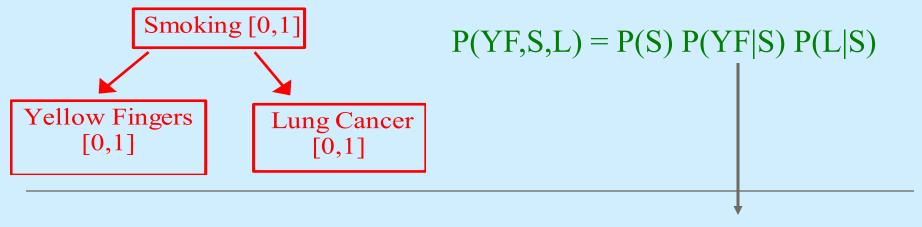


P(S,YF,L) = P(S) P(YF | S) P(LC | S)P(S=1,YF=1, LC=1) = .3 * .8 * .2 = .048 Smoking [0,1] P(YF =1 | I) = .5 Yellow Fingers Lung Cancer [0,1][0,1] $P_{m}(S=1,YF_{set}=1,LC=1) = ?$ $P_m(S=1,YF_{set}=1, LC=1) = P(S) P(YF | I) P(LC | S)$ $P_{m}(S=1, YF_{set}=1, LC=1) = .3 * .5 * .2 = .03$ 47

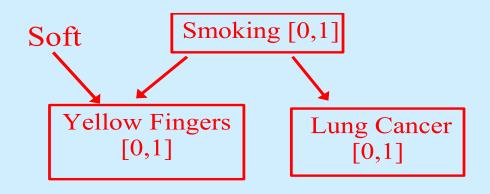


Calculating the effect of a hard intervention

Calculating the effect of a soft intervention



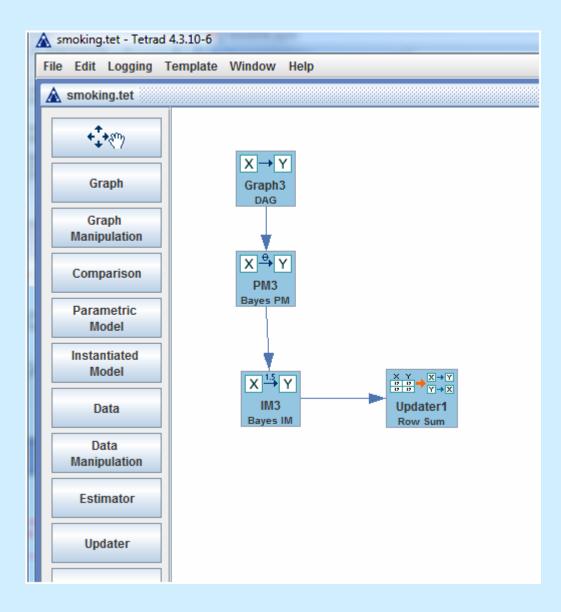
 $P_{m}(YF,S,L) = P(S)P(YF|S, Soft) P(L|S)$



Tetrad Demo & Hands-On

- 1) Use the DAG you built for Smoking, YF, and LC
- Define the Bayes PM (# and values of categories for each variable)
- 3) Attach a Bayes IM to the Bayes PM
- 4) Fill in the Conditional Probability Tables (make the values plausible).

Updating



Tetrad Demo

- 1) Use the IM just built of Smoking, YF, LC
- 2) Update LC on evidence: YF = 1
- 3) Update LC on evidence: YF _{set} = 1

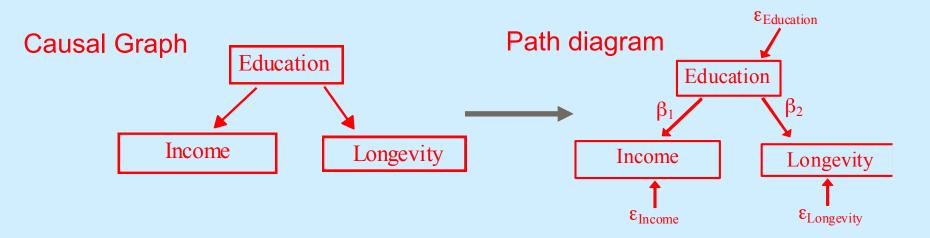
Structural Equation Models

Structural Equations For each variable X ∈ V, an *assignment* equation:

X := f_X (immediate-causes(X), ε_X)

Exogenous Distribution: Joint distribution over the exogenous vars : P(ε)

Linear Structural Equation Models



Equations:

Education := $\varepsilon_{Education}$ Income := β_1 Education + ε_{income} Longevity := β_2 Education + $\varepsilon_{Longevity}$

Structural Equation Model:

 $\mathbf{V} = \mathbf{B}\mathbf{V} + \mathbf{E}$

Exogenous Distribution:

- $\mathsf{P}(\epsilon_{ed},\,\epsilon_{\text{Income}},\epsilon_{\text{Income}}$)
 - $\forall i \neq j ~ \epsilon_i \perp \epsilon_j ~$ (pairwise independence)
 - no variance is zero

E.g.

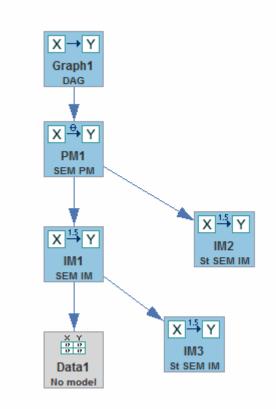
$$(\varepsilon_{ed}, \varepsilon_{Income}, \varepsilon_{Income}) \sim N(0, \Sigma^2) - \Sigma^2 \text{ diagonal},$$

- no variance is zero

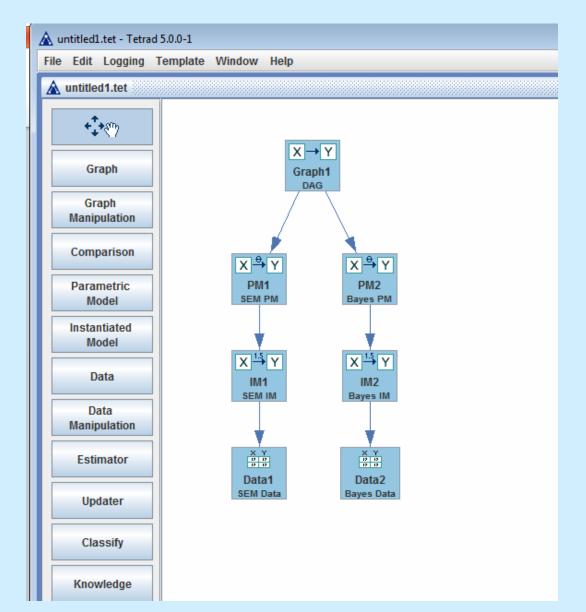
Tetrad Demo & Hands-On

- Attach a SEM PM to your 3-4 variable graph
- 2) Attach a SEM IM to the SEM PM
- 3) Change the coefficient values.

 Attach a Standardized SEM IM to the SEM PM, or the SEM IM



Simulated Data

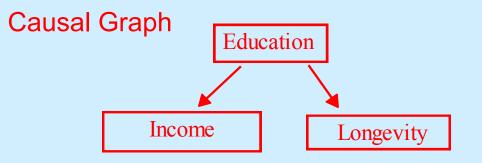


Tetrad Demo & Hands-On

1) Simulate Data from both your SEM IM and your Bayes IM

Generalized SEM

- 1) The Generalized SEM is a generalization of the linear SEM model.
- 2) Allows for arbitrary connection functions
- 3) Allows for arbitrary distributions
- 4) Simulation from cyclic models supported.



SEM Equations:

Education := $\varepsilon_{Education}$ Income := β_1 Education + ε_{income} Longevity := β_2 Education + $\varepsilon_{Longevity}$

 $P(\epsilon_{ed}, \epsilon_{Income}, \epsilon_{Income}) \sim N(0, \Sigma^2)$

<u>Generalized</u> SEM Equations: Education := ε_{Education}

Income := β_1 Education² + ε_{income} Longevity := β_2 In(Education) + $\varepsilon_{Longevity}$

 $P(\epsilon_{ed}, \, \epsilon_{Income}, \epsilon_{Income} \,) \, \, {\sim} U(0, 1)$

Hands On

- 1) Create a DAG.
- 2) Parameterize it as a Generalized SEM.
- In PM select from Tools menu "show error terms"
 Click on error term, change its distribution to Uniform
- 4) Make at least one function non-linear
- 5) Make at least one function interactive
- 6) Save the session as "generalizedSEM".