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Center for Causal Discovery: 

Summer Workshop - 2015 

June 8-11, 2015 

Carnegie Mellon University 



 
Goals 

1)  Working knowledge of graphical causal models 

2)  Basic working knowledge of Tetrad V 

3)  Basic understanding of search algorithms 

4)  Basic understanding of several applications: 
a)  fMRI 
b)  Lung Disease 
c)  Cancer 
d)  Genetic Regulatory Networks 

5)  Form community of researchers, users, and students interested 
in causal discovery in biomedical research  
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Tetrad: Complete Causal Modeling Tool 
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Tetrad 

1)  Main website: http://www.phil.cmu.edu/projects/tetrad/ 

2)  Download: http://www.phil.cmu.edu/projects/tetrad/current.html 

a)  Previous version you downloaded: tetrad-5.1.0-6 

b)  Newer version with several bug-fixes:  tetrad-5.2.1-0 

 

3)  Data files: 

www.phil.cmu.edu/projects/tetrad_download/download/workshop/Data/ 
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Outline 

Day 1: Graphical Causal Models, Tetrad 

1.  Introduction 
a)  Overview of Graphical Causal Models 

b)  Tetrad 

2.  Representing/Modeling Causal Systems 
a)  Parametric Models 

b)  Instantiated Models 

3.  Estimation, Inference, Updating and Model fit 

4.  Tiny Case Studies: Charity, Lead and IQ 
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Outline 

Day 2: Search 

1.  D-separation 

2.  Model Equivalence 

3.  Search Basics (PC, GES) 

4.  Latent Variable Model Search 

a)  FCI 

b)  MIMbuild 

5.  Examples 
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Outline 

Day 3: Examples 

1.  Overviews 
a)  fMRI 

b)  Cancer 

c)  Lung Disease 

d)  Genetic Regulatory Networks 

2.  Extra Issues 

a)  Measurement Error 

b)  Feedback and Time Series 
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Outline 

Day 4: Breakout Sessions 

1.  Morning 
a)  fMRI 

b)  Cancer 

c)  Lung Disease 

d)  Genetic Regulatory Networks 

2.  Afternoon 

a)  Overview of Algorithm Development (Systems Group) 

b)  Group Discussion on Data and Research Problems 
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Causation and Statistics 
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Modern Theory of  
Statistical Causal Models 

Counterfactuals 

 

 

  

Testable Constraints 
(e.g., Independence) 

 

 

  

Graphical  
Models 

 

 

  

Intervention & 
Manipulation 

 

 

  Potential 
Outcome Models 

 

 

  



 
Causal Inference Requires More than Probability 

 

  

In general: P(Y=y | X=x, Z=z)  ≠  P(Y=y | Xset=x, Z=z) 
 

 

 

  

Prediction from Observation ≠ Prediction from Intervention 
 
 

 

 

  

P(Lung Cancer 1960 = y | Tar-stained fingers 1950  = no)  
 

 

 

  

Causal Prediction vs. Statistical Prediction: 
 
 

 

 

  

Non-experimental data 
(observational study) 

 
 

 

 

  

Background Knowledge 
 
 

 

 

  

P(Y,X,Z) 
 
 

 

 

  

P(Y=y | X=x, Z=z) 
 
 

 

 

  

Causal Structure 
 
 

 

 

  

P(Y=y | Xset=x, Z=z) 
 
 

 

 

  

≠  
P(Lung Cancer 1960 = y | Tar-stained fingers 1950set = no)  
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Estimation vs. Search 
Estimation (Potential Outcomes) 

•  Causal Question: Effect of Zidovudine on Survival among HIV-positive men   
(Hernan, et al., 2000) 

•  Problem:  confounders (CD4 lymphocyte count) vary over time, and  
      they are dependent on previous treatment with Zidovudine   

•  Estimation method discussed: marginal structural models 

•  Assumptions:  

•  Treatment measured reliably 

•  Measured covariates sufficient to capture major sources of confounding 

•  Model of treatment given the past is accurate 

•  Output:  Effect estimate with confidence intervals 

 

  Fundamental Problem:  estimation/inference is conditional on the model 



Estimation vs. Search 

Search (Causal Graphical Models) 

•  Causal Question: which genes regulate flowering in Arbidopsis 

•  Problem:  over 25,000 potential genes.   

•  Method: graphical model search 

•  Assumptions:  

•  RNA microarray measurement reasonable proxy for gene expression 

•  Causal Markov assumption 

•  Etc. 

•  Output:  Suggestions for follow-up experiments 

 

 

  

Fundamental Problem: model space grows super-exponentially with the number of variables 



Causal Search 
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Causal Search:  

1.  Find/compute all the causal models that are 

indistinguishable given background knowledge and data 

2.  Represent features common to all such models 

Multiple Regression is often the wrong tool for Causal Search: 

 

Example:  Foreign Investment & Democracy 
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Foreign Investment 

Does Foreign Investment in 3rd World Countries 
inhibit Democracy? 

 
Timberlake, M. and Williams, K. (1984). Dependence, political 

exclusion, and government repression: Some cross-national 
evidence. American Sociological Review 49, 141-146.  

N = 72 
PO  degree of political exclusivity 
CV  lack of civil liberties 
EN  energy consumption per capita (economic development) 
FI   level of foreign investment 
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Correlations 

             po       fi      en       cv  
po  1.0 

fi   -.175   1.0       
en   -.480   0.330    1.0    

cv   0.868   -.391   -.430  1.0 

Foreign Investment 
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Regression Results 

po =    .227*fi      - .176*en +   .880*cv 
  
SE       (.058)        (.059)         (.060) 
t          3.941         -2.99          14.6 
P   .0002          .0044         .0000 

        
Interpretation:  foreign investment increases 

political repression 

Case Study: Foreign Investment 



 

.217 

 FI 

PO 

 CV  En 

Regression 

.88 -.176 

 

 FI 

PO 

 CV  En 

Tetrad - PC 

 

 FI 

PO 

 CV  En 

Fit: df=2, χ2=0.12,  
p-value = .94 

.31 -.23 

.86 -.48 

Case Study: Foreign Investment    Alternative Models 

There is no model with 
testable constraints (df > 0) 
that is not rejected by the 
data, in which FI has a 
positive effect on PO. 

 

 FI 

PO 

 CV  En 

Tetrad - FCI 



A Few Causal Discovery Highlights 

19 



(ROI) 
~10-20 Regions of Interest 

fMRI 
(~44,000 voxels) 

Causal 
Discovery  

Clark Glymour, Joe Ramsey, Ruben Sanchez CMU  



ASD vs. NT 

Usual Approach: 
Search for differential recruitment of brain regions 

Autism 
Catherine Hanson, Rutgers 



•  Face processing network 

•  Theory of Mind network 

•  Action understanding network 
 

ASD vs. NT 

Causal Modeling Approach: 

Examine connectivity of ROIs 



Results 

FACE 

TOM 

ACTION 



What was Learned 

face processing: ASD ≈ NT 

Theory of Mind:  ASD ≠ NT 

action understanding:  ASD ≠ NT 
when faces involved 



Genetic Regulatory Networks 

Arbidopsis 
 

Marloes Maathuis   ZTH (Zurich) 



Genetic Regulatory Networks 
Micro-array data 

~25,000 variables 

Causal 
Discovery  

Candidate Regulators of 
Flowering time 

Greenhouse experiments on 
flowering time 



Genetic Regulatory Networks 
Which genes affect flowering time in Arabidopsis thaliana? 

(Stekhoven et al., Bioinformatics, 2012) 

•  ~25,000 genes  
•  Modification of PC (stability) 
•  Among 25 genes in final ranking: 

•  5 known regulators of flowering 
•  20 remaining genes: 

•  For 13 of 20, seeds available 
•  9 of 13 yielded replicates 
•  4 of 9 affected flowering time 

•  Other techniques are little better than chance 



28 

Other Applications 

•  Educational Research:  
•  Online Courses,  

•  MOOCs,  

•  Cog. Tutors 

•  Economics:  
•  Causes of Meat Prices,  

•  Effects of International Trade 

•  Lead and IQ 

•  Stress, Depression, Religiosity 

•  Climate Change Modeling 

•  The Effects of Welfare Reform 

•  Etc. ! 



 
Outline 

Representing/Modeling Causal Systems 

1)  Causal Graphs 

2)  Parametric Models 

a)  Bayes Nets 

b)  Structural Equation Models 

c)  Generalized SEMs 
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Causal Graph G = {V,E}  
Each edge X → Y  represents a direct causal claim: 

  X is a direct cause of Y relative to V 

Causal Graphs 

Years of 
Education Income 

Income Skills and 
Knowledge  

Years of 
Education 
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Causal Graphs 

Not Cause Complete 
 

Common Cause Complete 

Income Skills and 
Knowledge  

Years of 
Education 

Omitteed 
Causes 

Omitteed 
Common 
Causes 

Income Skills and 
Knowledge  

Years of 
Education 
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Tetrad Demo & Hands-On 

Build and Save two acyclic causal graphs: 

1)  Build the Smoking graph picture above 

2)  Build your own graph with 4 variables 

Smoking 

YF LC 
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Sweaters  
On 

Room 
Temperature 

Pre-experimental System Post 

Modeling Ideal Interventions 

Interventions on the Effect 
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Modeling Ideal Interventions 

Sweaters 
On Room  

Temperature 

Pre-experimental System Post 

Interventions on the Cause 
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Interventions & Causal Graphs 
Model an ideal intervention by adding an “intervention” variable 

outside the original system as a direct cause of its target. 

 Education Income Taxes Pre-intervention graph 

Intervene on Income 

“Soft” Intervention  Education Income Taxes 

S 

“Hard” Intervention 
 Education Income Taxes 

I 
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Interventions & Causal Graphs 

Pre-intervention  

Graph 

Post-Intervention 
Graph? 

Intervention:   

•  hard intervention on both X1, X4 

•  Soft  intervention on X3   

X1 
X2 

X3 
X4 

X6 

X5 

X1 
X2 

X3 
X4 

X6 

X5 
I 

I 

S 



37 

Interventions & Causal Graphs 

Pre-intervention  

Graph 

Post-Intervention 
Graph? 

Intervention:   

•  hard intervention on both X1, X4 

•  Soft  intervention on X3   

X1 
X2 

X3 
X4 

X6 

X5 

X1 
X2 

X3 
X4 

X6 

X5 
I 

I 

S 
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Interventions & Causal Graphs 

Pre-intervention  

Graph 

Post-Intervention 
Graph? 

Intervention:   

•  hard intervention on X3 

•  Soft interventions on X6, X4   

X1 
X2 

X3 
X4 

X6 

X5 

I 

S 

S 

X1 
X2 

X3 
X4 

X6 

X5 
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Parametric Models 
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Instantiated Models 
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Causal Bayes Networks 

 Smoking [0,1]

 Lung Cancer
[0,1]

Yellow Fingers
[0,1]

P(S,YF, L) = 

The Joint Distribution Factors 

According to the Causal Graph,  

 ))(_|()( ∏
∈

=
Vx

XcausesDirectXVP P

P(LC | S)   P(S) P(YF | S)  
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Causal Bayes Networks 

  P(S = 0) = θ1 

  P(S = 1) = 1 - θ1     
P(YF = 0 | S = 0) = θ2   P(LC = 0 | S = 0) = θ4 

P(YF = 1 | S = 0) = 1- θ2   P(LC = 1 | S = 0) = 1- θ4 
P(YF = 0 | S = 1) = θ3   P(LC = 0 | S = 1) = θ5 

P(YF = 1 | S = 1) = 1- θ3   P(LC = 1 | S = 1) = 1- θ5 
 
 

 Smoking [0,1]

 Lung Cancer
[0,1]

Yellow Fingers
[0,1]

P(S) P(YF | S) P(LC | S) = f(θ)  

The Joint Distribution Factors 

According to the Causal Graph,  

 ))(_|()( ∏
∈

=
Vx

XcausesDirectXVP P

All variables binary [0,1]:        θ = {θ1, θ2,θ3,θ4,θ5, }     
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Causal Bayes Networks 

 Smoking [0,1]

 Lung Cancer
[0,1]

Yellow Fingers
[0,1]

P(S,YF, LC) = P(S) P(YF | S) P(LC | S) = f(θ)  

The Joint Distribution Factors 

According to the Causal Graph,  

 ))(_|()( ∏
∈

=
Vx

XcausesDirectXVP P

All variables binary [0,1]:        θ = {θ1, θ2,θ3,θ4,θ5, }     

All variables binary [0,1]:        θ = 

P(S,YF, LC) = P(S) P(YF | S) P(LC | YF, S) = f(θ)  

{θ1, θ2,θ3,θ4,θ5, θ6,θ7, }     

  Smoking [0,1] 

 Lung Cancer 
[0,1] 

Yellow Fingers 
[0,1] 
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Causal Bayes Networks 

  P(S = 0) = .7   
  P(S = 1) = .3     

P(YF = 0 | S = 0) = .99   P(LC = 0 | S = 0) = .95 
P(YF = 1 | S = 0) = .01   P(LC = 1 | S = 0) = .05 
P(YF = 0 | S = 1) = .20   P(LC = 0 | S = 1) = .80 
P(YF = 1 | S = 1) = .80   P(LC = 1 | S = 1) = .20 
 

 Smoking [0,1]

 Lung Cancer
[0,1]

Yellow Fingers
[0,1]

P(S,YF, L) = P(S) P(YF | S) P(LC | S) 

P(S=1,YF=1, LC=1) = ? 

The Joint Distribution Factors 

According to the Causal Graph,  

 ))(_|()( ∏
∈

=
Vx

XcausesDirectXVP P
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Causal Bayes Networks 

  P(S = 0) = .7   
  P(S = 1) = .3     

P(YF = 0 | S = 0) = .99   P(LC = 0 | S = 0) = .95 
P(YF = 1 | S = 0) = .01   P(LC = 1 | S = 0) = .05 
P(YF = 0 | S = 1) = .20   P(LC = 0 | S = 1) = .80 
P(YF = 1 | S = 1) = .80   P(LC = 1 | S = 1) = .20 
 

 Smoking [0,1]

 Lung Cancer
[0,1]

Yellow Fingers
[0,1]

P(S,YF, L) = P(S) P(YF | S) P(LC | S) 

P(S=1,YF=1, LC=1) = 

The Joint Distribution Factors 

According to the Causal Graph,  

 ))(_|()( ∏
∈

=
Vx

XcausesDirectXVP P

P(S=1,YF=1, LC=1) =      .3   * =  .048       .80            * .20 
P(LC = 1 | S=1) P(S=1) P(YF=1 | S=1) 



 Smoking [0,1]

 Lung Cancer
[0,1]

Yellow Fingers
[0,1]

P(YF,S,L) = P(S) P(YF|S) P(L|S) 

P(YF| I) 

  Smoking [0,1] 

 Lung Cancer 
[0,1] 

Yellow Fingers 
[0,1] 

I 

Calculating the effect of a hard interventions  

Pm (YF,S,L) = P(S)                 P(L|S) 
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 Smoking [0,1]

 Lung Cancer
[0,1]

Yellow Fingers
[0,1]

P(S,YF, L)               =  P(S) P(YF | S) P(LC | S) 

P(S=1,YF=1, LC=1) =   .3   *     .8         *     .2        =  .048 

  Smoking [0,1] 

 Lung Cancer 
[0,1] 

Yellow Fingers 
[0,1] 

I 

Pm (S=1,YFset=1, LC=1) =  P(S) P(YF | I) P(LC | S) 

P(YF =1 | I ) = .5  

Pm (S=1,YFset=1, LC=1) =         .3   *   .5       *    .2        =  .03 

Pm (S=1,YFset=1, LC=1) =  ? 

Calculating the effect of a hard intervention  



 Smoking [0,1]

 Lung Cancer
[0,1]

Yellow Fingers
[0,1]

P(YF,S,L) = P(S) P(YF|S) P(L|S) 

P(YF| S, Soft) 

  Smoking [0,1] 

 Lung Cancer 
[0,1] 

Yellow Fingers 
[0,1] 

Soft 

Calculating the effect of a soft intervention  

Pm (YF,S,L) = P(S)                        P(L|S) 
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Tetrad Demo & Hands-On 

1)  Use the DAG you built for Smoking, YF, and LC 

2)  Define the Bayes PM (# and values of categories for each 

variable) 

 

3)  Attach a Bayes IM to the Bayes PM 

4)  Fill in the Conditional Probability Tables  

   (make the values plausible).  
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Updating 
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Tetrad Demo 

1)  Use the IM just built of Smoking, YF, LC 

2)  Update LC on evidence: YF = 1 

3)  Update LC on evidence:  YF set = 1 
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Structural Equation Models 

❚  Structural Equations 
  For each variable X ∈ V, an assignment equation:  

 
   X := fX(immediate-causes(X), εX) 

 Education

 LongevityIncome

Causal Graph 

❚  Exogenous Distribution:  Joint distribution over the exogenous vars : P(ε) 
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Equations: 
     Education := εEducation 
     Income := β1 Education + εincome 

     Longevity := β2 Education + εLongevity 

 

 Education

 LongevityIncome

Causal Graph 
 

 Education 

 εIncome  εLongevity 

 β1  β2 

 Longevity Income 
 

 εEducation 

Path diagram 

Linear Structural Equation Models 

E.g. 
  (εed, εIncome,εIncome  )  ~N(0,Σ2) 
      - Σ2 diagonal, 
      - no variance is zero 

Exogenous Distribution: 
   P(εed, εIncome,εIncome  ) 

 - ∀i≠j εi ⊥ εj  (pairwise independence) 
     - no variance is zero 

 
Structural Equation Model: 
 

 V = BV + E 
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Tetrad Demo & Hands-On 

1)  Attach a SEM PM to your 3-4 variable 

graph 

2)  Attach a SEM IM to the SEM PM 

3)  Change the coefficient values. 

4)  Attach a Standardized SEM IM to the 

SEM PM, or the SEM IM 
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Simulated Data 
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Tetrad Demo & Hands-On 

1)  Simulate Data from both your SEM IM and your Bayes IM  



Generalized SEM 
1)  The Generalized SEM is a generalization of the linear SEM model. 

2)  Allows for arbitrary connection functions 

3)  Allows for arbitrary distributions 

4)  Simulation from cyclic models supported. 

 Education

 LongevityIncome

Causal Graph 

SEM Equations: 
     Education := εEducation 
     Income := β1 Education + εincome 

     Longevity := β2 Education + εLongevity 

 
P(εed, εIncome,εIncome  )  ~N(0,Σ2) 

Generalized SEM Equations: 
     Education := εEducation 
     Income := β1 Education2 + εincome 

     Longevity := β2 ln(Education) + εLongevity 

 
P(εed, εIncome,εIncome  )  ~U(0,1) 



Hands On 

1)  Create a DAG. 

2)  Parameterize it as a Generalized SEM. 

3)  In PM – select from Tools menu “show error terms” 

Click on error term, change its distribution to Uniform 

4)  Make at least one function non-linear 

5)  Make at least one function interactive 

6)  Save the session as “generalizedSEM”. 


