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Bridge Principles: Causation €<-> Probability
D-separation

Model Equivalence

Search Basics (PC, GES)

Latent Variable Model Search (FCI)
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Tetrad Demo
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Tetrad Demo and Hands-on

Go to “estimation2”

Add Search node (from Data1)
- Choose and execute one of the

“Pattern searches”

Add a “Graph Manipulation” node to search

result: “choose Dag in Pattern”
Add a PM to GraphManip
Estimate the PM on the data

Compare model-fit to model fit for true mode

XY
Data1
SEM Data
A
XY XY
5 Y= X
Search1
GES
e 15 v
oo "X Y
_’
Estimator4 X Y
SEM Est GraphManip1

Dag in Pattern

Y
X 5y

PM4
SEM PM



1)
2)
3)
4)

Backround Knowledge
Tetrad Demo and Hands-on

Create new session
Select “Search from Simulated Data” from Template menu
Build graph below, PM, IM, and generate sample data N=1,000.

Execute PC search, a = .05
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1)
2)
3)
4)

Add “Knowledge” node — as below

Backround Knowledge
Tetrad Demo and Hands-on

Create “Required edge X3 = X1 as shown below.

Execute PC search again, o = .05

Compare results (Search2) to previous search (Search1)
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1)
2)
3)
4)

Backround Knowledge
Tetrad Demo and Hands-on

Add new “Knowledge” node

Create “Tiers” as shown below.

Execute PC search again, o = .05

Compare results (Search2) to previous search (Search1)

B Knowledge1 (Tiers and Edges)
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Backround Knowledge

Direct and Indirect Consequences
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Backround Knowledge
Direct and Indirect Consequences
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1)
2)
3)

4)

5)

6)

7)
8)

Charitable Giving (Search)

Load in charity data
Add search node

Enter Background Knowledge:

. Tangibility is exogenous

. Amount Donated is endogenous only
. Tangibility = Imaginability is required
Choose and execute one of the

“Pattern searches”

Add a “Graph Manipulation” node to

search result: “choose Dag in Pattern”

Add a PM to GraphManip
Estimate the PM on the data

Compare model-fit to hypothetical model
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Constraint-based Search for Patterns

1) Adjacency phase

2) Orientation phase

11



Constraint-based Search for Patterns:
Adjacency phase

X and Y are not adjacent if they are independent
conditional on any subset that doesn’t X and Y

1) Adjacency
 Begin with a fully connected undirected graph

* Remove adjacency X-Y if X || Y |anysetS



Causal
Graph
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Constraint-based Search for Patterns:
Orientation phase

2) Orientation

« Collider test:
Find triples X - Y — Z, orient according to whether the set
that separated X-Z contains Y

« Away from collider test:
Find triples X > Y — Z, orient Y — Z connection via collider

test

» Repeat until no further orientations

« Apply Meek Rules

14



Search: Orientation

Patterns
Y Unshielded Test: X || _Z]S,isYES
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Search: Orientation

Away from Collider

T ndition
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Search: Orientation

After Adjacency Phase

Collider Test: X1 — X3 - X2
X1 || X2

Away from Collider Test:
X1 2>2X3-X4 X2 > X3-X4

X1 || X4|X3
X2 || X4|X3

Xl\
X
Xz/

3




Away from Collider Power!

Xl _’Xz - X3 Xl _”_ X3 |S,X2€S

Y 4

Xi— X, — X5

X, — X5 oriented as X, 2 X;

Why does this test also show that X, and X; are not confounded?

C
Xi— X, — X /\
Xi 7 X, — X5

X, I X5 IS, X,ES X, _ll_ X5 1S,X,ES,CES



Independence Equivalence Classes:
Patterns & PAGs

Patterns (Verma and Pearl, 1990): graphical
representation of d-separation equivalence among models

with no latent common causes

PAGs: (Richardson 1994) graphical representation of a d-
separation equivalence class that includes models with
latent common causes and sample selection bias that are
d-separation equivalent over a set of measured variables X

19




PAGs: Partial Ancestral Graphs
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PAGs: Partial Ancestral Graphs

Z, 7z,
G
PAG \ 7
\
Represents
|
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D _/22 7 AZ/@
o ®\@\.
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PAGs: Partial Ancestral Graphs

What PAG edges mean.

o—»

11

X, and X, are not adjacent
X, 18 not an ancestor of X,

No set d-separates X, and X,

X 18 a cause of X,

There is a latent common
cause of X; and X,

22



PAG Search: Orientation
PAGs

Y Unshielded

Xo—oYo—o0Z

X \Hk Z|Y X |l.Z|Y
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PAG Search:

After Adjacency Phase

Collider Test: X1 — X3 - X2

X1 | X2

Away from Collider Test:
X1 2>2X3-X4 X2 > X3-X4

X1 || X4|X3
X2 || X4|X3

Orientation
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Tetrad Demo and Hands-on

Create new session
Select “Search from Simulated Data” from Template menu

Build graphs for M1, M2, M3 “interesting cases”, parameterize,

instantiate, and generate sample data N=1,000.

Execute PC search, a = .05 M1
Execute FCI search, o = .05 l/ \l

26



Regression
&
Causal Inference
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Regression & Causal Inference

Typical (non-experimental) strategy:
1. Establish a prima facie case (X associated with Y)

Z

But, omitted variable bias &’ \

X Y

2. So, identifiy and measure potential confounders Z:

a) priorto X,
b) associated with X,
c) associated with' Y

3. Statistically adjust for Z (multiple regression)

28



Regression & Causal Inference

Multiple regression or any similar strategy is provably
unreliable for causal inference regarding X =2 Y, with
covariates Z, unless:

« XpriortoY

« X, Z,and Y are causally sufficient (no confounding)

29



4)
5)

Tetrad Demo and Hands-on

Create new session

Select “Search from Simulated Data” from Template menu

Build a graph for M4 “interesting cases”, parameterize as SEM, instantiate,

and generate sample data N=1,000.

Execute PC search, a = .05

Execute FCIl search, o = .05
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Summary of Search
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Causal Search
from Passive Observation

PC, GES - Patterns (Markov equivalence class - no latent confounding)

FCI 2> PAGs (Markov equivalence - including confounders and selection bias)
CCD - Linear cyclic models (no confounding)

BPC, FOFC, FTFC - (Equivalence class of linear latent variable models)

Lingam - unique DAG (no confounding — linear non-Gaussian — faithfulness not

needed)

LVLingam - set of DAGs (confounders allowed)
CyclicLingam - set of DGs (cyclic models, no confounding)
Non-linear additive noise models = unique DAG

Most of these algorithms are pointwise consistent — uniform consistent

algorithms require stronger assumptions
32



Causal Search
from Manipulations/Interventions

What sorts of manipulation/interventions have been studied?

Do(X=x) : replace P(X | parents(X)) with P(X=x) = 1.0
Randomize(X): (replace P(X | parents(X)) with P,,(X), e.g., uniform)
Soft interventions (replace P(X | parents(X)) with P,,(X | parents(X), 1), Py(l))

Simultaneous interventions (reduces the number of experiments required to be

guaranteed to find the truth with an independence oracle from N-1 to 2 log(N)
Sequential interventions
Sequential, conditional interventions

Time sensitive interventions
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Tetrad Demo and Hands-on

1) Search for models of Charitable Giving
2) Search for models of Foreign Investment

3) Search for models of Lead and I1Q
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