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Predictions

e.g., Conditional Independence
X |.Z|Y

Vxy,z P(X=x,Z=z|Y=y) =

P(X=x|Y=y) P(Z=z | Y=y)



Bridge Principles:
Acyclic Causal Graph over V = Constraints on P(V)

Weak Causal Markov Assumption

V,,V, causally disconnected = V, ||_V,

V,,V, causally disconnected <
i. V, not a cause of V,, and
ii. V, not an effect of V,, and

iiil. No common cause Z of V, and V,



Bridge Principles:
Acyclic Causal Graph over V = Constraints on P(V)

Weak Causal Markov Assumption Determinism

V,,V, causally disconnected = V., ||_V, (Structural Equations)

)

If G is a causal graph, and P a probability distribution over the variables in

Causal Markov Axiom

G, then in <G,P> satisfy the Markov Axiom iff:

every variable V is independent of its non-effects,

conditional on its immediate causes.



Bridge Principles:
Acyclic Causal Graph over V = Constraints on P(V)

Causal Markov Axiom Acyclicity

Vo

d-separation criterion

Z\

Causal Graph Graphical Independence Oracle

z =l x >y, Z_|I_Y, X Z_|I_Y, |X
. Z Yy IXY,  Z_LY, XY,

Y, Yo LY X YL Y, [XZ



D-separation

Undirected Paths

Colliders vs. Non-Colliders



D-separation: Undirected Paths

V
X—_ —
\ W—>Y

Undirected Path from X to Y:

any sequence of edges beginning with X and ending at Y in which no
edge repeats

Paths from X to Y;



D-separation: Undirected Paths

V
X— —
\\ W——»Y

Undirected Path from X to Y:

any sequence of edges beginning with X and ending at Y in which no
edge repeats

Paths from X to Y;
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D-separation: Undirected Paths

V
X— —
\\ W——»Y

Undirected Path from X to Y:

any sequence of edges beginning with X and ending at Y in which no
edge repeats

Paths from X to Y;

)X €E€VIY

X >Y
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D-separation: Undirected Paths

V
X—_ —
\\ W——»Y

Undirected Path from X to Y:

any sequence of edges beginning with X and ending at Y in which no
edge repeats

Paths from X to Y;

)X €E€VIY
)X >Y

INIX2>2Z1EW-DY
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D-separation: Undirected Paths

V
X—_ —
\ W—>Y

Undirected Path from X to Y:

any sequence of edges beginning with X and ending at Y in which no
edge repeats

Paths from X to Y;

NXEVSY HX2>Z21<W->U->Y

)X >Y

IXDZIEWDY
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D-separation: Undirected Paths

vV
X—_ —

™~ 2z W—— Y

TN

Undirected Path from X to Y:

any sequence of edges beginning with X and ending at Y in which no
edge repeats

Paths from X to Y;
NXEVSY HDNX2>2Z1<EW>2U>2Y
2)X > Y SYX2>2Z1>22>U->Y

IXDZIEWDY
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D-separation: Undirected Paths

vV
X—_ —

™~ 2z W—— Y

Y

Undirected Path from X to Y:

any sequence of edges beginning with X and ending at Y in which no
edge repeats

Paths from X to Y;
NXEVSY HDNX2>2Z1<EW>2U>2Y
2)X > Y N)IX2>2Z1>22>U>Y

HXS>ZI€WSY OXDZI>Z2>U€W>Y
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D-separation: Undirected Paths

V
X—_ —

™~ 2z W—— Y

N\

Undirected Path from X to Y:

any sequence of edges beginning with X and ending at Y in which no
edge repeats

llllegal Path from X to Y:

NXECZ1 222> UEEW2 212225 U2 Y




Colliders

X

\\

v

Y: Collider Y: Non-Collider
- X z| [x Z
N N
b
Shielded Unshielded
X >/ X Z
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A variable is or is not a collider on a path

vV
X—_ —

\Z<—W—>Y

\

Variable: U

Paths from Xto Y
X2>Z1EW->2U>2Y

Paths on which U is a non-collider:

17



Colliders — a variable on a path

\Y;
X—_ —
\ W—>Y

L

Variable: U

Paths from Xto Y
X2>Z1EW->U>Y

Paths on which U is a non-collider:
X=>Z21>22>U=>Y

Path on which U is a collider:

18



Colliders — a variable on a path

\Y;
X—_ —
\ W—>Y

\

Variable: U

Paths from Xto Y
X2>Z1EW->U>Y

Paths on which U is a non-collider:
X=>Z21>22>U>Y

Path on which Uis a collider: X2Z12222>U<CW->Y

19



Conditioning on Colliders
induce Association

Gas

[y.n]

Gas ||

Battery

[live, dead]

N/

Car Starts
[y,n]

Battery

Gas )\ Battery | Car starts = no

Conditioning on Non-Colliders
screen-off Association

Exp
[y,n]

Symptoms

[yes, no]

AN

Infection

[y.n]

Expjb Symptoms

Exp _||_

Symptoms | Infection

20



D-separation

X is d-separated from Y by Z in G iff
Every undirected path between X and Y in G is inactive relative to Z

An undirected path is inactive relative to Z iff
any node on the path is inactive relative to Z

A node N (on a path) is inactive A node N (on a path) is active
relative to Z iff relative to Z iff
a) N is a non-collider in Z, or a) N is a non-collider not in Z, or
b) N is a collider that is not in Z, b) N is a collider that is in Z,
and has no descendant in Z or has a descendant in Z

X d-sep Y relativeto Z = ?

/ v \ Undirected Paths between X, Y:

X—— 2, «——W—> Y
Zf W 1) X>Z, € WY
Z, 2) X€VDY

21



D-separation

X is d-separated from Y by Z in G iff

Every undirected path between X and Y in G is inactive relative to Z

An undirected path is inactive relative to Z iff
any node on the path is inactive relative to Z

A node N (on a path) is inactive
relative to Z iff
a) N is a non-collider in Z, or

b) N is a collider that is not in Z,
and has no descendant in Z

/V\

X—> Z,+—W—— Y

l

Z,

A node N (on a path) is active
relative to Z iff
a) N is a non-collider not in Z, or

b) N is a collider that is in Z,
or has a descendant in Z

X d-sep Y relativeto Z = ?
X>Z, €W->Y active? No

Z1 active? No
W active? Yes

22



D-separation

X is d-separated from Y by Z in G iff
Every undirected path between X and Y in G is inactive relative to Z

An undirected path is inactive relative to Z iff
any node on the path is inactive relative to Z

A node N (on a path) is inactive A node N (on a path) is active
relative to Z iff relative to Z iff
a) N is a non-collider in Z, or a) N is a non-collider not in Z, or
b) N is a collider that is not in Z, b) N is a collider that is in Z,
and has no descendant in Z or has a descendant in Z

X d-sep Y relativetoZ=2? No

/ \% \ X €V->Y active? Yes

X Z, W Y V active? Yes

l

Z,
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D-separation

X is d-separated from Y by Z in G iff

Every undirected path between X and Y in G is inactive relative to Z

An undirected path is inactive relative to Z iff
any node on the path is inactive relative to Z

A node N is inactive relative to Z iff
a) N is a non-collider in Z, or

b) N is a collider that is not in Z,
and has no descendant in Z

/V\

X—>Z1: W » Y

|

Z,

A node N (on a path) is active
relative to Z iff
a) N is a non-collider not in Z, or

b) N is a collider that is in Z,
or has a descendant in Z

X d-sep Y relativetoZ = {W, Z,}?

Undirected Paths between X, Y:

1) X>Z, €W->Y

2) X &€V>Y



D-separation

X is d-separated from Y by Z in G iff

Every undirected path between X and Y in G is inactive relative to Z

An undirected path is inactive relative to Z iff
any node on the path is inactive relative to Z

A node N is inactive relative to Z iff
a) N is a non-collider in Z, or

b) N is a collider that is not in Z,
and has no descendant in Z

A node N (on a path) is active
relative to Z iff
a) N is a non-collider not in Z, or

b) N is a collider that is in Z,
or has a descendant in Z

X d-sep Y relativetoZ = {W, Z,}?

1) X>Z, € WY

Z1 active? Yes

W active? No

No



X — 4,

AN Y

D-separation
X d-sep Y given @ ? No

Xd-sepYgiven{Z;}? No

X d-sep Z, given & ? No

X d-sep Z, given {Z,} ? No

26



D-separation + Intervention:
Statistical Control # Experimental Control

Question: Does X, directly cause X;? How to find out?

Truth: No, X, mediates _
Experimentally control for X,

Xi = Xo |—ap| X

/
/

27



D-separation + Intervention:

Statistical Control # Experimental Control

@ Experimentally control for X,
SN X, d-sep X, by {X,set} 227
X | X [ Xo |[—] &3
7 Yes: X5 || X4 | X,(set)
/
@ Statistically control for X,

X; d-sep X, by {X,} ?77?

No! X3 T XX,

28



Break
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Equivalence Classes

Equivalence:
Independence Equivalence: M; E(X_|_Y|2Z) & M, E(X_|_Y|Z2)

Distribution Equivalence: V6, 36, M,(6,) = M,(6,), and vice versa)

Independence (d-separation equivalence)
DAGs : Patterns
PAGs : Partial Ancestral Graphs
Intervention Equivalence Classes

Measurement Model Equivalence Classes
Linear Non-Gaussian Model Equivalence Classes
Etc.

30



d-separation/Independence Equivalence

D-separation Equivalence Theorem (Verma and Pearl, 1988)

Two acyclic graphs over the same set of variables are
d-separation equivalent iff they have:

the same adjacencies
the same unshielded colliders

31



Colliders

X

\\

v

Y: Collider Y: Non-Collider
- X z| [x Z
N N
b
Shielded Unshielded
X >/ X Z
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d-separation/Independence Equivalence

D-separation Equivalence Theorem (Verma and Pearl, 1988)

Two acyclic graphs over the same set of variables are
d-separation equivalent iff they have:

the same adjacencies
the same unshielded colliders

Exercises
Create a 4-variable DAG
Specify a 1-edge variant that is equivalent
Specify a 1-edge variant that is not

Show with IM and Estimators that you have succeeded in
steps 2 and 3

33



Independence Equivalence Classes:
Patterns & PAGs

Patterns (Verma and Pearl, 1990): graphical
representation of d-separation equivalence class

(among models with no latent common causes)

PAGs: (Richardson 1994) graphical representation of a d-
separation equivalence class that includes models with
latent common causes and sample selection bias that are
d-separation equivalent over a set of measured variables X

34



Patterns

Possible Edges
X X2
X1 - X2

35




Patterns: What the Edges Mean

X4 and X, are not adjacent in any

2y X2 | member of the equivalence class
X4 — X5 (X4 is a cause of X»)

X [ X2 | n every member of the
equivalence class.
X1 — X, in some members of th

X, X, 1 >IN some members of the

equivalence class, and X, — X4 in
others.

36



Patterns

Pattern

37




Patterns

Specify all the causal graphs represented by the Pattern:

x1

X3 X2

X4

??

X1

2) »~

X3 x2

x4 x5

?7?

38



Patterns

Specify all the causal graphs represented by the Pattern:

X1 1
X3 X2 %3 ¥2
. X
K X4 X5
X1 X1 .
RN
X3 X2 X3 X2
< > 4
A K ' a
X4 X4 X5
X1
A
X3 X2
) > b4
L A
X4
X1
X3 X2 A
. . -
A K 39 N ’ N

X4



Tetrad Demo: Generating Patterns

A\ untitledl tet - Tetrad 5.1.0-6 o -@ =

File Edit Logging Template Window Help

A\ untitled1.tet

*
€ pam
Graph _’

Graph1
DAG

Graph
Manipulation

Comparison _,

Parametric GraphManip1
Model | Pattern from Da

Instantiated
Model

Data

Data
Manipulation

«

40



Break
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Causal Search Spaces are Large

Directed Acyclic Graphs (between 2 T(MIN@2 ) and 3T(MIN@2 ) ) ...
(BMN@2 )is O(N2)

Directed Graphs (4 T(BIN@2 ) )

Markov Equivalence Class of DAGs (patterns) : DAGs / 3.7

Markov Equivalence Class of DAGs with confounders (roughly PAGs) ?7?
Equivalence Class of “Linear Measurement Models” ??

Equivalence Class of Directed Graphs with confounders

« Relative to: Experimental Setup V = {Obs, Manip} ??

42



Causal Search as a Method

Causal Knowledge

e.g.,
Markov Equivalence Class of Causal Graphs

&

Discovery Algorithm

Experimental Setup(V)

« V={Obs, Manip}
P(Manip)

g A\ e

Background Knowledge General Assumptions
-  Markoy,

- Salary * Gender - Faithfulness
- Linearity

- Infection 2> Symptoms - Gaussianity
- Acyclicity

Statistical
Inference

Data

43



rkov Equivalence
Class of Causal Graphs

~—_

Ma
(Pattern)
X%
X;

e

1
X j— X2 |—

\ Discovery

Background Knowledge

X, prior in time to X,

For Example

Passive Observation

7

Algorithm

Statistical
Inference

General Assumptions

Markov, Faithfulness, No
latents, no cycles,

44




Faithfulness

Constraints on a probability distribution P generated by a
causal structure G hold for all parameterizations of G.

Tax Rate
w
Py Economy
Tax %
Revenues

Revenues := f,Rate + ,Economy + ¢g,,

Economy := f;Rate + &g,

Faithfulness:

B1 # -B3f
Bo # -B3f;

45



Faithfulness

Constraints on a probability distribution P generated by a causal structure
G hold for all parameterizations of G.

All and only the constraints that hold in P(V) are entailed by the causal
structure G(V), rather than lower dimensional surfaces in the parameter
space.

Causal Markov Axiom:
X and Y causally disconnected |= X |l_Y

Faithfulness:
X and Y causally disconnected =| X |l_Y

46



Challenges to Faithfulness

Gene A -
Gene B
+ j
+
Protein 24
Air
Temp \ Core Body
Temp
Homeostatic

Regulator

By evolutionary design:

Gene A _||_ Protein 24

By evolutionary design:

Air temp _||_ Core Body Temp

Sampling Rate vs. Equilibration rate

47



Search Methods

Constraint Based Searches
PC, FCI

Pointwise, but not uniformly consistent

Scoring Searches
Scores: BIC, AIC, etc.
Search: Hill Climb, Genetic Alg., Simulated Annealing
Difficult to extend to latent variable models
Meek and Chickering Greedy Equivalence Class (GES)
Pointwise, but not uniformly consistent

Latent Variable Psychometric Model Search
BPC, MIMbuild, etc.

Linear non-Gaussian models (Lingam)
Models with cycles
And more!!!

48



Score Based Search

Equivalence Class of
Causal Graphs

Xl X2

Equivalence Class of
Causal Graphs

X

Model Score

v

X|

Model Scores:
AIC, BIC, etc.

Equivalence Class of

Causal Graphs

Rm—

Background Knowledge

e.g., X, priorin time to X,

49



