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Talk Motivation 

• In 2000 sound and complete computational 
causal graph algorithms could be used with up 
to approx. 100 variables with conventional 
hardware.  

• In 2015 analyses with more than 1,000,000 
variables (for local graphs) and more than 
10,000 variables (for complete graphs) are 
routine with very modest hardware. 
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Goals 

(a) Summarize the extraordinary progress 
accomplished in the last 2 decades and where 
the field is. 
(b) R&D process model we used, some insights 
about the discovery process, and a few empirical 
principles for developing and validating highly 
practical algorithms for causal discovery. 
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Caveats  

(a) Emphasize:  
 local algorithms,  
 local-to-global,  
 Markov Boundary,  
 multiplicity and  
 experimentation minimization algorithms. 
(b) Perspective heavily influenced by the work done in my 
group since 2000 (and our approach to such R&D). 
 
  

 
4 C. Aliferis 2015 



Assumptions 

Audience is familiar with: 
• Key principles and applications of machine 

learning including predictive modeling, 
feature selection, probabilistic causal 
graphs/causal discovery 
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Goal #1: Predictive Modeling 

• Forecast the future 
• Anticipate events 
But also: 
• Recognize patterns 
• Assign objects to predefined categories 
• Approximate functions (I/O behavior of 

systems) 
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Goal #1: Predictive Modeling 

7 C. Aliferis 2015 



Goal #1: Predictive Modeling 
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Goal #2: Causal Modeling 

• Recognize causes of events 
• Recognize complex causal relationships 
• Predict events that follow interventions 

(“manipulations”) of a system 
• Attribute events to their causes 
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Goal #2: Causal Modeling 
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Causality 

• Hard to define philosophically 
• Good operational way via hypothetical 

Randomized Experiments 
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Causality without Experiments 

• Dismissive attitude: “Correlation is not causation” 
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Critique of: “Correlation is not causation” and the strict 
& blind adherence to an experimental discovery 

approach 
 

1. Some correlations are causative and some are not. Is there a way to 
systematically differentiate reliably between the two types? It turns 
out there is. 

2. Is there a way to infer what effects at least certain manipulations 
would have? It turns out there is. 

3. REs are neither sound, nor complete. They admit both false positive, 
false negative, and true but inflated causal conclusions 

4. REs are typically expensive, slow, low-dimensional and unethical or 
otherwise infeasible. 
 

Remainder of talk: take a peek at methods that allow causal discovery without experiments, and 
combined causal and predictive modeling without experiments. 
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Generation #1: Simon/Pearl/ 
Spirtes/Glymour/Scheines/Cooper/Granger 

• Learn a causal model if no hidden variables 
exist 
 

• Key references: 
1. J. Pearl “Causality: Models, Reasoning and Inference”. 

Cambridge University Press, 2000 
2. P. Spirtes, C. Glymour, R. Scheines “Causation Prediction and 

Search”. MIT Press, 1993, 2000 
3. C. Glymour, G. Cooper “Computation, Causation and 

Discovery” AAAI Press 1999 
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We need an adequate language for causal discovery. Causal 
Bayesian Networks simplest and most commonly used one 

• BN=Graph (Variables (nodes), dependencies (arcs)) + Joint Probability 
Distribution + Causal Markov Property 

• Causal Markov property captures usual semantics of causality  
 



Causal Modeling: PC Algorithm 
a prototypical causal discovery algorithm 
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PC algorithm: Skeleton Discovery 

Sprites et al., 1993 
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Causal Modeling: PC Algorithm 
PC algorithm: Skeleton Discovery, Trace 



Causal Modeling: PC Algorithm 
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PC algorithm: Orientation 



Generation #2: Pearl & 
Spirtes/Glymour/Scheines  

• Learn a causal model if hidden variables exist 
 

• 2 major algorithms: 
 

1. FCI P. Spirtes et al “Causation Prediction and 
Search”. MIT Press, 1993, 2000 

2. IC* J. Pearl “Causality: Models, Reasoning and 
Inference”. Cambridge University Press, 2000 
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Problem #1: Scalability 

“In our view, inferring complete causal models […] is 
essentially impossible in large-scale data mining 
applications with thousands of variables”.  

 

Silverstein, Brin, Motwani, Ullman. 
Data Mining and Knowledge Discovery, 2000, pp. 163-
192. 
 
Indeed in 2000 one could use sound causal algorithms 
with up to 100 variables with conventional hardware 
and slightly more with super computers. 
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Approaches to Scalability 

• Special distributions (e.g., multivariate normal, or 
Simple Bayes etc.) 

• Structural constraints (e.g., connectivity) 
• Incomplete learning (output some but not all 

causal relations) 
• Heuristic search 
• Focus on skeleton but omit edge orientation 
• Local learning: learn a local causal neighborhood 
• Related to local learning: local to global  
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Local causal learning and relationship 
to Prediction 

• Ideally we wish to blend predictive and causal 
modeling because each side has distinct 
advantages. 

• (Obviously) we do not wish to fall in to the 
trap of confusing predictive with causal 
knowledge when they do not coincide. 

• (Not so obviously) we do not want to use 
incoherent models for prediction and causal 
inference. 
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Approach for Hybrid Predictive + 
Causal Modeling 
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The Markov Boundary is the set of 
variables that provides a principled 
and mathematically optimal way to 
- reduce variable dimensionality,  
- achieve optimal predictivity and –  
- discover direct causes and effects 
for a target/response variable of 
interest. F 
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A bit of theory underlying hybrid 
causal+predictive modeling 

• There is no single definition of relevancy that covers all combinations of 
distributions, learners and loss functions (No uniformly optimal filter 
algorithm exists). 

• It is not possible to use wrapper (search and estimate) algorithms for 
feature selection (No Free Lunch Theorem for feature selection). 

• Under broad classes of above, Markov Boundary is optimal predictor set 
and coincides with Kohavi and John’s “Strongly Relevant Features”. 

• In most distributions, the MB has local causal properties: direct causes + 
direct effects + direct causes of the direct effects. 

• Technicalities in:  
 
"Towards Principled Feature Selection: Relevance, Filters, and Wrappers". I. 
Tsamardinos and C.F. Aliferis.  In Proceedings of the Ninth International 
Workshop on Artificial Intelligence and Statistics, Key West, Florida, USA, 
January 3-6, 2003. 
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Practical Approach for Hybrid 
Predictive + Causal Modeling 
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• If you know the Markov Boundary you 
can use any standard powerful classifier 
or regression algorithm to build a 
predictive model. 

• This model will contain all information 
about the response contained in the full 
distribution (ie will be optimally 
predictive) 

• Yet by keeping only the MB variable we 
can safely ignore unnecessary input 
variables (ie MB is smallest set of 
optimal predictor variables). 
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Advantageous Properties of Hybrid 
Causal-Predictive Analytics 1 
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Dissect Predictivity vs 
Causation 



Advantageous Properties of Hybrid 
Causal-Predictive Analytics 2 
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Optimal Predictivity and 
Parsimony 



Advantageous Properties of Hybrid 
Causal-Predictive Analytics 3 
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Advantageous Properties of Hybrid 
Causal-Predictive Analytics 4 

• Model multiplicity and optimize models 
• Amenable to parallelization, federated 

analysis, sequential analysis and chunking 
• Sound, sample efficient, and scalable in most 

real life distributions 
• Robust to violation of assumptions 
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Generation #3: Localized MB 
(“Definitional”) 

• How do we find the MB? 
• One way is to learn a full causal graph, then look 

at parents, children and spouses. 
• NOT practical. 
• Kohler-Sahami: heuristic, non-scalable. 
• K2MB: heuristic, non scalable 
• Algorithm Grow-Shrink (Margaritis and Thrun 

2000) returns Markov Boundary only. Sound but 
sample inefficient and non-scalable.   

30 C. Aliferis 2015 



Generation #4: Scalable Localized MB 
(Definitional) 

• IAMB family. 
• Return the MB. 
• Sound in faithful distributions. 
• Sample inefficient (but more efficient than GS) 
• Very Scalable (>1,000,000 variables with conventional 

hardware). 
• Robust to hidden variables. 
• First paper: 
 
"Algorithms for Large Scale Markov Blanket Discovery". I. Tsamardinos, C.F. 
Aliferis, A. Statnikov.  In Proceedings of the 16th International Florida Artificial 
Intelligence Research Society (FLAIRS) Conference, St. Augustine, Florida, USA; 
AAAI Press, pages 376-380, May 12-14, 2003. 
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Generation #5: Localized Edges 
• Algorithms MMPC and HITON-PC 
• Return the direct causes and direct effects only  
• Sound in faithful distributions with no hidden variables locally. 
• Sample efficient 
• Very Scalable (>1,000,000 variables with conventional 

hardware). 
• Robust to violations of assumptions. 
• First papers: 
 
1. Time and Sample Efficient Discovery of Markov Blankets and Direct Causal Relations". I. 

Tsamardinos, C.F. Aliferis, A. Statnikov.  In Proceedings of the 9th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, Washington, DC, USA; ACM Press, pages 
673-678, August 24-27, 2003. 

2. "HITON, A Novel Markov Blanket Algorithm for Optimal Variable Selection”. C. F. Aliferis, I. 
Tsamardinos, A. Statnikov. In Proceedings of the 2003 American Medical Informatics Association 
(AMIA) Annual Symposium, pages 21-25, 2003. 
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Causal Modeling: HITON-PC Algorithm (simple 
version: without symmetry correction or 

optimizations) 

B 

T 

C 

D 

E 

A 

Trace of HITON-PC 
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Causal Modeling: Semi-Interleaved HITON-PC 
a more efficient implementation 

34 

• Efficient, and robust. 
• Scalable to very BIG 

DATA. 
• Easily extended for 

global causal discovery 
with the LGL 
framework. 

• An instantiation of the 
GLL framework.   

 



Generation #6: Scalable Region 

• Learn causal graph (or Markov network) up to 
distance k  from target T by recursive 
application of local algorithms. 
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Generation #7: 
Parallelizing/Chunking/Distributing/ 
Sequential Scalable MB (Definitional) 

• Framework that allows 
– Distributing IAMB-style MB computation among n processors 
– Computing IAMB-style MBs in federated databases 
– Computing IAMB style MBs when data does not fit in a 

processor by chunking data 
– Computing IAMB style MBs in sequential series of analyses 

 
Aliferis CF, Tsamardinos I. Method, System, and Apparatus for 
Casual Discovery and Variable Selection for Classification. United 
States Patent, US 7,117,185 B1, 2006. 
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Generation #8: Scalable MB 
(“Compositional”) 

• Build MB one edge at a time. 
• Sound in faithful distributions. 
• Sample efficient. 
• Robust to violations of some assumptions (e.g. feedback 

loops) 
• Very saleable (>1,000,000 variables with conventional 

hardware) 
• First papers: 
1. Time and Sample Efficient Discovery of Markov Blankets and Direct Causal Relations". I. 

Tsamardinos, C.F. Aliferis, A. Statnikov.  In Proceedings of the 9th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, Washington, DC, USA; ACM Press, pages 
673-678, August 24-27, 2003. 

2. "HITON, A Novel Markov Blanket Algorithm for Optimal Variable Selection”. C. F. Aliferis, I. 
Tsamardinos, A. Statnikov. In Proceedings of the 2003 American Medical Informatics Association 
(AMIA) Annual Symposium, pages 21-25, 2003. 
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Generation #9: DAQ Local to Global – 
Full Causal Graph – Algorithm MMHC 

• Builds local neighborhoods, connects them and then repairs 
graph with search and score Bayesian approach 

• Sound skeleton in faithful distributions. 
• Heuristic orientation, best of class overall quality of graph 

discovery  
• Sample efficient. 
• Discrete variables only. 
• Very scaleable (>10,000 variables with conventional 

hardware) 
 

• First paper: 
“The Max-Min Hill Climbing Bayesian Network Structure Learning Algorithm”. 
I. Tsamardinos, L.E. Brown, C.F. Aliferis. Machine Learning, 65:31-78, 2006. 
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Generation #10: Generalized Learning 
Frameworks: GLL & LGL 

• Generalize the algorithms for local causal edges and compositional MB.  
• Generalize the divide and conquer approach of MMHC for full causal 

graph discovery. 
• Generalization in form of generative algorithms that can be instantiated in 

an infinity of ways. 
• Admissibility rules describe constraints on instantiation that when 

followed guarantee soundness. 
• Specific new instantiations achieve higher scalability, applicability on 

continuous data and even better quality of reconstruction. 
 
Key papers: 

 
“Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification. Part I: 
Algorithms and Empirical Evaluation” C.F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos. Journal of 
Machine Learning Research, 11(Jan):171- 234, 2010. 
“Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification. Part II: Analysis 
and Extensions” Constantin F. Aliferis, Alexander Statnikov, Ioannis Tsamardinos, Subramani Mani, and Xenofon D. 
Koutsoukos . Journal of Machine Learning Research, 11(Jan):235 - 284, 2010. 
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Generation #11: Target Information 
Equivalency & Modeling Multiplicity 

• In some distributions: not one but many MBs. 
• No need for determinism! 
• Distinct from collinearity. 
• Number of MBs can be exponential to number of 

variables! 
• All MBs have optimal predictive information; all 

are irreducible; some have some have more local 
causal variables than others; some are more 
proximal than others; some are larger than 
others. 
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Graph of a causal Bayesian network used to trace the TIE∗ algorithm. 
The network parameterization is provided in Table 8 in Appendix B. 
The response variable is T. All variables take values {0,1}. Variables that 
contain equivalent information about T are highlighted with the same 
color, for example, variables X1 and X5 provide equivalent information 
about T; variable X9 and each of the four variable sets {X5,X6}, {X1,X2}, 
{X1,X6}, {X5,X2} provide equivalent information about T. 



Figure 1. The figure describes a class of Bayesian networks that share the same pathway structure (with 3 gene 
variables A, B, C and a phenotypic response variable T) and their joint probability distribution obeys the 

constraints shown below the structure. 

Statnikov A, Aliferis CF (2010) Analysis and Computational Dissection of Molecular Signature Multiplicity. PLoS Comput Biol 6(5): e1000790. 
doi:10.1371/journal.pcbi.1000790 
http://127.0.0.1:8081/ploscompbiol/article?id=info:doi/10.1371/journal.pcbi.1000790 

http://127.0.0.1:8081/ploscompbiol/article?id=info:doi/10.1371/journal.pcbi.1000790


High-level pseudocode of the TIE* algorithm. 

Statnikov A, Aliferis CF (2010) Analysis and Computational Dissection of Molecular Signature Multiplicity. PLoS Comput Biol 6(5): e1000790. 
doi:10.1371/journal.pcbi.1000790 
http://127.0.0.1:8081/ploscompbiol/article?id=info:doi/10.1371/journal.pcbi.1000790 

http://127.0.0.1:8081/ploscompbiol/article?id=info:doi/10.1371/journal.pcbi.1000790


Generation #11: Target Information Equivalency 
& Modeling Multiplicity CONT’D 

• TIE* family of algorithms extracts all MBs in a distribution. 
• Sample efficient. 
• Sound. 
• Scalable (>1,000,000 variables with conventional hardware). 
• Like GLL and LGL generative framework describes generative 

algorithm, admissibility criteria and meta properties. 
• Papers: 

 
“Analysis and Computational Dissection of Molecular Signature Multiplicity” 
A. Statnikov, C.F. Aliferis. (Cover Article) PLoS Computational Biology, 2010; 
6(5): e1000790. 
Algorithms for Discovery of Multiple Markov Boundaries. Alexander Statnikov, 
Nikita I. Lytkin, Jan Lemeire, Constantin F. Aliferis; JMLR, 14(Feb):499−566, 
2013. 
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Generation #12: Compositional MBs with 
Hidden Variables (Algorithm CIMB) 

• IAMB family (definitional MB algortihms) 
robust to hidden variables but GLL-MB family 
(compositional algorithms) admit false 
negatives. 

• CIMB is a compositional family that avoids 
false negatives. 

• Same sample efficiency, soundness and 
scalability as GLL-MB. 
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Generation #13: Experimentation 
Minimizing with Algorithm ODLP 

• Causal Model-Guided Experimental Minimization and 
Adaptive Data Collection 

• Intends to help experimentalists reduce the number of 
experiments needed to learn a causal model. 

• Especially useful when experimentation is needed to 
resolve causal ambiguity that is undiscoverable without 
experimentation. 

 
“New Ultra-Scalable and Experimentally Efficient Methods for 
Local Causal Pathway Discovery”.  
Alexander Statnikov, Mikael Henaff, Nikita Lytkin, Efstratios 
Efstathiadis, Eric R. Peskin, Constantin F. Aliferis (to appear in 
JMLR) 
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Simplified view of the Framework: 

47 



Causal Model Guided Experimental 
Minimization and Adaptive Data Collection 

The ODLP Algorithm: 
Output: 
• Local causal pathway (parents and children) of the variable of 

interest. 
Two Phases: 
• Identify local causal pathway consistent with the data and 

information equivalent clusters. 
• Adaptively recommend experiments to perform, integrate 

experimental results to refine and orient the local causal 
pathway. 

48 Statnikov et al., 2015 (Accepted) 



Causal Model Guided Experimental 
Minimization and Adaptive Data Collection 

49 

The ODLP Algorithm: 
Output: 
• Local causal pathway (parents 

and children) of the variable of 
interest. 

Two Phases: 
• Identify local causal pathway 

consistent with the data and 
information equivalent 
clusters. 

• Adaptively recommend 
experiments to perform, 
integrate experimental results 
to refine and orient the local 
causal pathway. 

ODLP: Pseudo Code: 



Causal Model Guided Experimental 
Minimization and Adaptive Data Collection 

The ODLP Algorithm Phase I: 
• Identify local causal pathway consistent with the data and 

information equivalent clusters (TIE*, iTIE* algorithms). 
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Causal Model Guided Experimental 
Minimization and Adaptive Data Collection 

The ODLP Algorithm Phase I: iTIE*  

51 



Causal Model Guided Experimental 
Minimization and Adaptive Data Collection 

The ODLP Algorithm Phase II: 
• Adaptively recommend experiments to perform, integrate 

experimental results to refine and orient the local causal 
pathway. (i.e. Identify Causes, Effects, and Passengers). 
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Causal Model Guided Experimental 
Minimization and Adaptive Data Collection 

ODLP: Identifying effects 

effects 

• Manipulate T and obtain experimental 
data DE. 

• Mark all variables in V that change in DE 
due to manipulation of T as effects.  
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Causal Model Guided Experimental 
Minimization and Adaptive Data Collection 

ODLP: direct and indirect effects 

Indirect effect 

• Select an effect variable X that has 
neither been marked as indirect effect 
nor as direct effect. 

• Manipulate X and obtain experimental 
data DE. 

• Mark all effect variables that change in 
DE due to manipulation of X and 
belong to the same equivalence cluster 
as indirect effects. 

• The last effect variable in an equivalent 
cluster that is not marked as indirect 
effect is a direct effect. 
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Causal Model Guided Experimental 
Minimization and Adaptive Data Collection 

ODLP: Identifying Passengers 

Passengers 

• Select an unmarked variable X from an 
equivalence cluster. 

• Manipulate X and obtain experimental 
data DE. 

• If T does not change in DE due to 
manipulation of X, mark X as a 
passenger and mark all other non-effect 
variables that change in DE due to 
manipulation of X as passengers; 
otherwise mark X as a cause. 
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Causal Model Guided Experimental 
Minimization and Adaptive Data Collection 

ODLP: Identifying Causes 

• For every cause X, mark X as a direct 
cause if there exist no other cause in 
the same equivalence cluster that 
changes due to manipulation of X; 
otherwise mark X as an Indirect cause. 

• If there is an equivalence cluster that 
contains a single unmarked variable X 
and all marked variables in this cluster 
(if any) are only passengers and/or 
effects, then mark X as a direct cause. 
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Generation #14: Generalized 
Framework for Parallel/ Chunked/ 
Sequential/Distributed Processing 

• As in P/D/S/C framework for definitional MB 
algorithms but extends to local causal, MB 
compositional and TIE algortihms 
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APPLICATION/PROVING GROUND #1 
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1. Optimal predictivity and maximum 
feature selection parsimony 



First Results: General Distributions 
• >100 algorithms 
• >40 datasets 
• Key references 
“Local Causal and Markov Blanket Induction for Causal Discovery and 

Feature Selection for Classification. Part I: Algorithms and Empirical 
Evaluation” C.F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. 
D. Koutsoukos. Journal of Machine Learning Research, 11(Jan):171- 
234, 2010. 

“Local Causal and Markov Blanket Induction for Causal Discovery and 
Feature Selection for Classification. Part II: Analysis and Extensions” 
Constantin F. Aliferis, Alexander Statnikov, Ioannis Tsamardinos, 
Subramani Mani, and Xenofon D. Koutsoukos . Journal of Machine 
Learning Research, 11(Jan):235 - 284, 2010. 
 



 
Development of maximally parsimonious and maximally predictive 

models and predictive variable sets 
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Simultaneous identification of causative and predictive determinants 

of the response variable using induction of Markov Blankets (i.e., 
partial causal graph induction) 
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New Results: HT Molecular Data 

• 43 dataset-tasks 
• GLL algorithm (HITON-PCnonsym instantiation) vs 

35 Comparator algorithms including: 
– Univariate association + wrapping – based 
– PCA-based 
– SVM-based (RFE) 
– Random Forest –based 
– Regularized regression – based 
– Various other heuristic 

 



43 dataset-tasks  
Name Data type Assaying platform Task Num. 

variables 

Num. 
sample

s 

Adam Proteomics mass-
spectromety SELDI-TOF-MS Dx 779 326 

Conrads Proteomics mass-
spectromety High Resolution QqTOF Dx 2190 216 

Alexandrov Proteomics mass-
spectromety MALDI-TOF Dx 16331 112 

Ressom1 Proteomics mass-
spectromety MALDI-TOF Dx 214 150 

Ressom3 Proteomics mass-
spectromety MALDI-TOF Dx 191 123 

Ressom5 Proteomics mass-
spectromety MALDI-TOF Dx 250 129 

Bhattacharjee
2 Microarray gene expression Affymetrix HG-U95A Dx 12600 203 

Bhattacharjee
3 Microarray gene expression Affymetrix HG-U95A Dx 12600 160 

Savage Microarray gene expression Affymetrix HG-133A and HG-
133B Dx 32403 210 

Dave1 Microarray gene expression Human LymphDx 2.7k 
GeneChip Dx 2745 303 

Dyrskjot1 Microarray gene expression MDL Human 3k Dx 1381 404 

Miller1 Microarray gene expression Affymetrix HG-U133A Dx 22283 251 

Miller2 Microarray gene expression Affymetrix HG-U133A Dx 22283 247 

Miller3 Microarray gene expression Affymetrix HG-U133A Dx 22283 251 

Vijver3 Microarray gene expression Agilent Hu25K Px 24496 215 

Rosenwald4 Microarray gene expression Lymphochip Px 7399 227 

Rosenwald5 Microarray gene expression Lymphochip Px 7399 208 

Rosenwald6 Microarray gene expression Lymphochip Px 7399 194 

Taylor2 Microarray gene expression Affymetrix Human Exon 1.0 
ST Array Dx 43419 150 

Blaser1 Microbiomics Roche 454 sequencing Dx 660 66 

Blaser2 Microbiomics Roche 454 sequencing Dx 660 66 

Blaser3 Microbiomics Roche 454 sequencing Dx 660 66 



43 dataset-tasks CONT’D  
Sreekumar Metabolomics High-throughput LC-MS and 

GC-MS Dx 1061 107 

Schulte miRNA RT-qPCR Px 307 69 

Leidinger miRNA Geniom Biochip miRNA Dx 864 57 

Taylor1 miRNA Agilent-019118 Human miRNA 
Microarray 2.0 Dx 373 113 

Landi miRNA CCDTM miRNA700-V3 Dx 198 290 

Guo miRNA 
Tsinghua University 
mammalian 2K microRNA 
microarray 

Dx 1932 257 

Taylor3 aCGH Agilent-014693 Human 
Genome CGH Microarray 244A Dx 231021 218 

Stransky aCGH UCSF Hum Array 2.0 CGH  Dx 2143 57 

Trolet aCGH Custom 4K BAC clones array Px 3649 78 

Blaveri aCGH UCSF Hum Array 2.0 CGH  Dx 2142 98 

Snijders aCGH UCSF Hum Array 2.0 CGH  Dx 1934 75 

Lindgren1 aCGH SWEGENE_BAC_32K_Full Dx 31935 103 

Lindgren2 aCGH SWEGENE_BAC_32K_Full Px 31935 84 

Teschendorff DNA Methylation Illumina HumanMethylation27 
BeadChip  Dx 27578 540 

Christensen1 DNA Methylation Illumina GoldenGate 
Methylation Cancer Panel I Dx 1413 109 

Christensen2 DNA Methylation Illumina GoldenGate 
Methylation Cancer Panel I Dx 1413 176 

Christensen3 DNA Methylation Illumina GoldenGate 
Methylation Cancer Panel I Dx 1413 215 

Holm1 DNA Methylation 
Illumina GoldenGate 
Methylation Cancer Panel I 
 

Dx 1452 174 

Holm2 DNA Methylation 
Illumina GoldenGate 
Methylation Cancer Panel I 
 

Dx 1452 174 

Holm3 DNA Methylation 
Illumina GoldenGate 
Methylation Cancer Panel I 
 

Dx 1452 148 

Holm4 DNA Methylation 
Illumina GoldenGate 
Methylation Cancer Panel I 
 

Dx 1452 89 

Holm5 DNA Methylation 
Illumina GoldenGate 
Methylation Cancer Panel I 
 

Dx 1452 78 

Holm6 DNA Methylation 
Illumina GoldenGate 
Methylation Cancer Panel I 
 

Dx 1452 81 



Experimental Results :  
Accuracy + Parsimony 

Number of selected features 
K=3 

Dataset name Dataset type 
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Microarray 9.9 11.0 1512.0 8.6 3502.5 3007.6 3.8 2864.4 3.1 3421.6 3.1 3421.6 3251.1 531.1 6338.1 5487.3 9.8 63.6 1.8 30.1 5178.1 63.2 1266.2 72.9 5432.7 3389.2 9654.6 

Microbiomics 3.2 1.7 18.7 1.5 42.7 7.4 1.1 74.1 198.0 341.0 1.4 43.3 1.7 3.1 90.9 82.5 3.5 5.7 1.2 28.7 30.7 15.5 25.5 6.0 165.0 32.9 227.9 
Metabolomics 5.4 2.1 48.6 1.0 180.1 0.1 1.2 200.8 1.3 81.7 1.3 81.7 0.0 28.9 197.3 8.8 17.5 27.4 1.2 121.3 2.0 58.2 264.8 2.6 430.7 75.7 349.0 

miRNA 4.3 3.1 127.1 5.3 378.9 381.2 7.5 322.3 8.3 174.1 8.3 174.1 395.0 11.0 142.4 466.0 12.2 28.2 2.7 24.5 68.3 26.5 66.5 130.6 480.6 262.6 514.2 

aCGH 7.2 4.2 4589.4 3.5 20552.
9 

15804.
6 5.9 28666.

2 9.9 30654.
9 9.9 30654.

9 
19289.

8 117.8 20966.
7 

28208.
9 5.7 32.1 2.0 36.9 3396.4 3317.7 11105.

2 153.1 11341.
1 1643.9 10362.

4 
DNA 

Methylation 9.1 97.7 2937.4 28.6 3026.5 1076.2 3.5 3124.2 5.3 3073.1 5.2 3073.1 541.5 744.4 1233.6 1597.4 28.7 75.0 2.2 34.9 83.8 517.4 1628.2 1131.8 3038.7 1452.6 3289.2 

Grand 7.7 26.9 1840.4 10.8 4988.0 3808.9 4.6 6081.7 26.3 6537.2 9.2 6514.6 4300.2 342.5 5434.5 6633.3 14.9 97.1 2.5 35.6 2083.3 657.5 2485.9 337.9 4239.0 1652.3 5430.9 
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SP
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1 

SP
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Average Proteomics 0.964 0.936 0.981 0.925 0.972 0.984 0.943 0.980 0.942 0.975 0.936 0.973 0.979 0.939 0.976 0.986 0.957 0.977 0.922 0.979 0.939 0.960 0.980 0.919 0.978 0.962 0.985 
Microarray 0.819 0.747 0.826 0.799 0.820 0.805 0.799 0.829 0.778 0.829 0.778 0.829 0.801 0.807 0.826 0.825 0.818 0.817 0.781 0.811 0.798 0.800 0.800 0.680 0.813 0.801 0.825 

Microbiomics 0.843 0.699 0.749 0.732 0.780 0.624 0.719 0.755 0.672 0.615 0.767 0.697 0.692 0.708 0.746 0.806 0.827 0.799 0.760 0.758 0.713 0.691 0.690 0.559 0.639 0.570 0.602 
Metabolomics 0.750 0.560 0.628 0.447 0.505 0.460 0.425 0.493 0.401 0.519 0.401 0.519 0.500 0.603 0.672 0.519 0.682 0.623 0.391 0.615 0.519 0.559 0.577 0.397 0.656 0.468 0.544 

miRNA 0.923 0.894 0.942 0.896 0.934 0.949 0.893 0.922 0.900 0.937 0.900 0.937 0.945 0.911 0.916 0.948 0.920 0.933 0.898 0.922 0.843 0.895 0.916 0.833 0.921 0.907 0.935 
aCGH 0.797 0.708 0.794 0.762 0.806 0.713 0.755 0.801 0.729 0.815 0.729 0.815 0.725 0.802 0.829 0.826 0.751 0.771 0.724 0.793 0.735 0.744 0.781 0.666 0.749 0.696 0.792 
DNA 

Methylation 0.899 0.845 0.910 0.861 0.909 0.924 0.853 0.908 0.854 0.913 0.853 0.913 0.921 0.894 0.921 0.929 0.883 0.904 0.851 0.885 0.806 0.896 0.908 0.828 0.905 0.871 0.918 

Grand 0.865 0.797 0.864 0.822 0.861 0.837 0.820 0.860 0.807 0.856 0.812 0.861 0.842 0.844 0.869 0.876 0.849 0.858 0.810 0.851 0.802 0.832 0.846 0.745 0.842 0.811 0.853 



Experimental Results: over all data types 
Predictivity and Parsimony 

Predictivity Reduction 
Feature Selection Method P-value Nominal winner P-value Nominal winner 

ALL 0.5 Other 0 HITON-PC 
SVM_RFE1 0 HITON-PC 0.3764 HITON-PC 
SVM_RFE2 0.4508 HITON-PC 0 HITON-PC 
UAF_KW1 0 HITON-PC 0.3793 HITON-PC 
UAF_KW2 0.3477 HITON-PC 0 HITON-PC 

UAF_KW_FDR 0.032 HITON-PC 0 HITON-PC 
UAF_SN1 0 HITON-PC 0.0012 Other 
UAF_SN2 0.3273 HITON-PC 0 HITON-PC 
UAF_BW1 0 HITON-PC 0.0314 HITON-PC 
UAF_BW2 0.2444 HITON-PC 0 HITON-PC 

UAF_T1 0 HITON-PC 0.4689 HITON-PC 
UAF_T2 0.3651 HITON-PC 0 HITON-PC 

UAF_T_FDR 0.0496 HITON-PC 0 HITON-PC 
UAF_X21 0.0085 HITON-PC 0 HITON-PC 
UAF_X22 0.2633 Other 0 HITON-PC 

UAF_X2_FDR 0.0868 Other 0 HITON-PC 
mRMR1 0 HITON-PC 0.0011 HITON-PC 
mRMR2 0.123 HITON-PC 0 HITON-PC 
mRMR3 0 HITON-PC 0.0053 Other 
mRMR4 0.0241 HITON-PC 0 HITON-PC 
mRMR5 0 HITON-PC 0.0683 HITON-PC 
mRMR6 0.1496 HITON-PC 0 HITON-PC 
RFVS1 0.0107 HITON-PC 0.0163 HITON-PC 
RFVS2 0.1832 HITON-PC 0 HITON-PC 

LARS_EN1 0 HITON-PC 0 Other 
LARS_EN2 0.0126 HITON-PC 0 HITON-PC 

SIMCA 0 HITON-PC 0 HITON-PC 
SIMCA_SVM1 0.0015 HITON-PC 0 HITON-PC 
SIMCA_SVM2 0.0244 HITON-PC 0 HITON-PC 

PCA1 0 HITON-PC 0 HITON-PC 
PCA2 0.0163 HITON-PC 0 HITON-PC 

SPCA1 0.0003 HITON-PC 0 HITON-PC 
SPCA2 0.1763 HITON-PC 0 HITON-PC 
TGDR1 0 HITON-PC 0 Other 
TGDR2 0.0164 HITON-PC 0.0224 HITON-PC 
TGDR3 0.0667 HITON-PC 0 HITON-PC 

reference HPC method: HPC_Z, K=3, alpha=0.05 



Experimental Results By Data Type:  
Accuracy + Parsimony 
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Experimental Results By Data Type:  
Accuracy + Parsimony CONT’D 

 miRNA  
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Experimental Results  
Reproducibility 

Area under ROC curve absolute nominal difference

Dataset name
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Beer 0.000 0.001 0.000 0.000 0.000 0.008 0.004 0.002 0.003 0.002 0.000 0.000 0.019 0.130
Su 0.004 0.002 0.002 0.103 0.009 0.040 0.005 0.010 0.038 0.000 0.000 0.000 0.316 0.049

Sotiriou1 0.089 0.036 0.002 0.146 0.017 0.099 0.047 0.146 0.061 0.020 0.023 0.041 0.218 0.015
Sotiriou3 0.106 0.023 0.058 0.024 0.010 0.006 0.010 0.144 0.070 0.074 0.133 0.060 0.103 0.000

Freije 0.025 0.053 0.065 0.106 0.106 0.085 0.020 0.004 0.028 0.050 0.107 0.015 0.031 0.013
Ross3 0.156 0.005 0.118 0.149 0.149 0.018 0.121 0.186 0.083 0.068 0.099 0.099 0.141 0.017

Average 0.063 0.020 0.041 0.088 0.049 0.043 0.035 0.082 0.047 0.036 0.060 0.036 0.138 0.037
Median 0.057 0.014 0.030 0.105 0.014 0.029 0.015 0.077 0.050 0.035 0.061 0.028 0.122 0.016

Min 0.000 0.001 0.000 0.000 0.000 0.006 0.004 0.002 0.003 0.000 0.000 0.000 0.019 0.000
Max 0.156 0.053 0.118 0.149 0.149 0.099 0.121 0.186 0.083 0.074 0.133 0.099 0.316 0.130

Coefficient of variation 1.000 1.064 1.175 0.709 1.297 0.945 1.312 1.041 0.629 0.919 0.984 1.088 0.826 1.291

Area under ROC curve statistical difference
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Beer 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 0.000 0.000 0.000
Su 0.000 0.000 0.000 0.000 0.000 -0.007 0.000 0.000 -0.029 0.000 0.000 0.000 -0.181 -0.027

Sotiriou1 0.000 0.000 0.000 0.000 0.000 -0.019 -0.009 -0.074 -0.074 0.000 -0.022 0.000 0.000 0.000
Sotiriou3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Freije 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ross3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Average 0.000 0.000 0.000 0.000 0.000 -0.004 -0.002 -0.013 -0.017 0.000 -0.004 0.000 -0.030 -0.004

K=3

K=3
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Experimental Results: Parsimony 
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Experimental Results  
Classification performance vs random selection 
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2. Network reverse-engineering 
methods (Causal Discovery) 

73 



74 

Experimental Results  
Pathway localization 
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Experimental Results  
Pathway localization 



Passengers, Drivers, Irrelevant 

REGED with 10,000 irrelevant variables

Dataset name TP
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M

CA
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AUC 1.000 0.961 1.000 0.990 0.998 0.998 0.998 0.999 1.000 0.967 1.000 0.961 0.971 0.994
Number of selected features 15 10999 15 3 5 633 646 7 18 2 24 10999 687 1375
Undirected Graph Distance 0.000 1.000 0.000 0.000 0.000 0.600 0.601 0.020 0.053 0.000 0.091 1.000 0.645 0.673
False Negative Proportion 0.0% 0.0% 13.3% 80.0% 66.7% 6.7% 6.7% 60.0% 20.0% 86.7% 13.3% 0.0% 53.3% 13.3%
False Positive Proportion 0.0% 100.0% 0.0% 0.0% 0.0% 60.6% 61.1% 0.1% 0.6% 0.0% 0.5% 100.0% 69.1% 76.3%

DC 2 2 2 1 2 2 2 1 2 1 2 2 2 2
IC 0 57 0 0 0 57 56 1 2 0 0 57 56 57
DE 13 13 11 2 3 12 12 5 10 1 11 13 5 11
IE 0 6 0 0 0 6 6 0 3 0 1 6 3 6

Passenger 0 711 0 0 0 533 538 0 1 0 4 711 621 680
IR 0 10210 2 0 0 23 32 0 0 0 6 10210 0 619

K=3
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First Results: general Distributions,  
MMHC algorithm 

• 7 algorithms (13 total variants) 
• Applied to >20 simulated data from known 

Bayesian networks 
• Key reference 
“The Max-Min Hill Climbing Bayesian Network 

Structure Learning Algorithm”. I. 
Tsamardinos, L.E. Brown, C.F. Aliferis. 
Machine Learning, 65:31-78, 2006. 
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Experimental Results – MMHC 
Time-Structural errors 



Recent Results: LGL-Bach 
• 15 datasets and gold standards 
• LGL algorithm (HITON-Back) vs 32 de-novo reverse-engineering methods that work 

with genome-scale observational data 
• Key reference: 
“A Comprehensive Assessment of Methods for De-Novo Reverse-Engineering of 

Genome-Scale Regulatory Networks” Varun Narendra, Nikita I. Lytkin, Constantin F. 
Aliferis, Alexander Statnikov. Genomics, 2010.  

Graph: 
• Aracne (2) 
• Relevance Networks (3) 
• SA-CLR (2) 
• CLR (4) 
• LGL-Bach (6) 
• Hierarchical Clustering (1) 
• Graphical Lasso (1) 
• GeneNet (2) 
• Fisher’s Z (2) 
• qp-graphs (5) 

Likelihood of interactions: 
• Mutual Information (2) 
• SA-CLR (1) 
• CLR (2) 
• GeneNet (1) 
• qp-graphs (5) 
• Fisher’s Z (1) 



Comparator Methods by family 
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Univariate: 
• Relevance Networks (3) 
• CLR (4) 
• Fisher’s Z (2) 
• Mutual Information (2) 

 
Random/control: 
• Full graph (1) 
• Empty graph (1) 

 

Multivariate: 
• Aracne (2) 
• SA-CLR (2) 
• Hierarchical Clustering (1) 
• LGL-Bach (6) 
• Graphical Lasso (1) 
• GeneNet (2) 
• qp-graphs (5) 



5 simulated datasets and gold-standards 
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Dataset 
Gold-Standard Gene expression data 

Description 
No. of 
TFs 

No. of 
genes 

No. of 
edges 

Description 
No. of 
arrays 

No. of 
genes 

REGED REGED network  - 1,000 1,148 
First 500 instances from REGED 
dataset  

500 1,000 

GNW(A) 
Yeast regulatory network from 
GNW 2.0 

157 4,441 12,864 
25 time series with 21 time 
points in each generated by 
GNW 2.0 

525 4,441 

GNW(B) 
1000-gene subnetwork of Yeast 
regulatory network from GNW 2.0 

68 1,000 3,221 
25 time series with 21 time 
points in each generated by 
GNW 2.0 

525 1,000 

GNW(C) E.coli network from GNW 2.0 166 1,502 3,476 
25 time series with 21 time 
points in each generated by 
GNW 2.0 

525 1,502 

GNW(D) 
1000-gene subnetwork of E.coli 
regulatory network from GNW 2.0 

121 1,000 2,361 
25 time series with 21 time 
points in each generated by 
GNW 2.0 

525 1,000 



10 real datasets and gold-standards 
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Dataset 

Gold-Standard Gene expression data 

Description 
No. of 
TFs 

No. of 
genes 

No. of 
edges 

Description 
No. of 
arrays 

No.  of 
genes 

ECOLI(A) 
TF-gene interactions from RegulonDB 6.4 
(strong evidence) 

140 1,053 1,982 E.coli gene expression 
dataset from Many 

Microbe Microarrays 
Database 

907 4,297 ECOLI(B) 
TF-gene interactions from RegulonDB 6.4 
(strong and weak evidence) 

174 1,465 3,399 

ECOLI(C) DREAM2 TF-gene network from RegulonDB 6.0 152 1,135 3,070 

ECOLI(D) DREAM2 TF-gene network from RegulonDB 6.0 152 1,146 3,091 
E.coli gene expression 
dataset from DREAM2 

300 3,456 

YEAST(A) 
TF-gene interactions from the Fraenkel lab,  
(α = 0.001, C = 0) 

116 2,779 6,455 

Yeast gene expression 
dataset from Many 

Microbe Microarrays 
Database 

530 5,520 

YEAST(B) 
TF-gene interactions from the Fraenkel lab,  
(α = 0.001, C = 1) 

115 2,295 4,754 

YEAST(C) 
TF-gene interactions from the Fraenkel lab,  
(α = 0.001, C = 2) 

115 1,949 3,667 

YEAST(D) 
TF-gene interactions from the Fraenkel lab,  
(α = 0.005, C = 0) 

116 3,508 10,915 

YEAST(E) 
TF-gene interactions from the Fraenkel lab,  
(α = 0.005, C = 1) 

115 2,872 7,491 

YEAST(F) 
TF-gene interactions from the Fraenkel lab,  
(α = 0.005, C = 2) 

115 2,372 5,448 



More on real gold-standards 
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• Several studies estimated that E. Coli and Yeast 
gold-standards capture up to 80-90% of all TF-
gene relations. 

• TF-DNA binding interactions do not always imply 
functional changes in gene expression. 

• Condition-dependent transcription and possible 
mismatch with gene expression data. 

• Small changes in expression cannot be reliably 
detected by microarrays. 

• Cellular aggregation and sampling from mixtures 
of distributions can hide statistical relations. 



Empirical evaluation: causal (mechanism) 
discovery. Combined PPV/NPV 

REGED GNW(A) GNW(B) GNW(C) GNW(D) ECOLI(A) ECOLI(B) ECOLI(C) ECOLI(D) YEAST(A) YEAST(B) YEAST(C) YEAST(D) YEAST(E) YEAST(F)
α = 10-7 0.350 0.796 0.725 0.840 0.864 0.851 0.862 0.826 0.858 0.969 0.970 0.972 0.958 0.962 0.963
α = 0.05 0.826 0.802 0.739 0.841 0.868 0.851 0.862 0.826 0.858 0.969 0.970 0.972 0.958 0.962 0.963
α = 10-7 0.995 0.953 0.888 0.965 0.942 0.985 0.985 0.980 0.975 0.980 0.982 0.983 0.973 0.977 0.980
α = 0.05 0.997 0.981 0.950 0.985 0.979 0.986 0.986 0.981 0.981 0.980 0.982 0.983 0.973 0.977 0.980

0.994 0.937 0.903 0.954 0.948 0.984 0.984 0.979 0.968 0.979 0.981 0.983 0.973 0.977 0.979
α = 0.05 0.976 0.944 0.880 0.949 0.933 0.960 0.963 0.956 0.953 0.978 0.980 0.982 0.972 0.976 0.978
FDR = 0.05 0.718 0.858 0.762 0.873 0.868 0.899 0.908 0.893 0.882 0.970 0.971 0.974 0.962 0.965 0.968
Normal MI estimator; α = 0.05 0.963 0.928 0.850 0.933 0.913 0.951 0.957 0.947 0.947 0.979 0.981 0.982 0.973 0.977 0.978
Normal MI estimator; FDR = 0.05 0.693 0.846 0.737 0.855 0.849 0.887 0.901 0.879 0.888 0.972 0.972 0.974 0.965 0.969 0.970
Stouffer MI estimator; α = 0.05 0.975 0.934 0.858 0.939 0.920 0.959 0.963 0.955 0.953 0.979 0.981 0.982 0.973 0.977 0.978
Stouffer MI estimator; FDR = 0.05 0.736 0.858 0.751 0.866 0.859 0.911 0.922 0.907 0.905 0.974 0.975 0.976 0.967 0.971 0.972
max-k = 1, w/o symmetry 0.185 0.528 0.665 0.720 0.788 0.552 0.577 0.495 0.611 0.949 0.956 0.950 0.936 0.944 0.935
max-k = 2, w/o symmetry 0.141 0.571 0.655 0.724 0.565 0.429 0.400 0.356 0.568 0.939 0.941 0.940 0.930 0.942 0.938
max-k = 3, w/o symmetry 0.127 0.553 0.655 0.734 0.559 0.540 0.521 0.403 0.578 0.928 0.937 0.927 0.921 0.938 0.928
max-k = 1, with symmetry 0.173 0.528 0.663 0.722 0.790 0.600 0.609 0.508 0.608 0.950 0.957 0.951 0.938 0.945 0.936
max-k = 2, with symmetry 0.105 0.556 0.655 0.712 0.566 0.509 0.494 0.415 0.557 0.931 0.934 0.923 0.926 0.935 0.921
max-k = 3, with symmetry 0.087 0.524 0.616 0.522 0.543 0.465 0.439 0.378 0.559 0.941 0.938 0.932 0.927 0.933 0.921

0.996 0.944 0.850 0.950 0.914 0.960 0.964 0.956 0.956 0.979 0.981 0.982 0.973 0.976 0.979
0.801 0.393 0.384 0.608 0.686 0.805 0.840 0.786 0.301 0.970 0.973 0.973 0.964 0.969 0.966

α = 0.05 0.975 0.974 0.938 0.982 0.972 0.965 0.971 0.961 0.961 0.971 0.972 0.973 0.963 0.967 0.969
FDR = 0.05 0.805 0.970 0.943 0.977 0.969 0.895 0.912 0.887 0.891 0.960 0.961 0.961 0.951 0.956 0.956
q = 1 0.996 0.979 0.946 0.984 0.977 0.986 0.986 0.981 0.981 0.980 0.982 0.983 0.973 0.977 0.980
q = 2 0.996 0.980 0.949 0.985 0.978 0.986 0.986 0.981 0.981 0.980 0.982 0.983 0.973 0.978 0.980
q = 3 0.996 0.981 0.949 0.985 0.979 0.986 0.986 0.981 0.981 0.980 0.984 0.985 0.973 0.978 0.981
q = 20 0.995 0.981 0.950 0.985 0.979 0.986 0.986 0.981 0.981 0.980 0.982 0.983 0.973 0.977 0.980
q = 200 0.996 0.979 0.949 0.983 0.977 0.986 0.986 0.981 0.981 0.980 0.982 0.983 0.973 0.977 0.980
α = 0.05 0.996 0.975 0.935 0.980 0.972 0.984 0.985 0.979 0.978 0.980 0.982 0.983 0.973 0.977 0.980
FDR = 0.05 0.996 0.973 0.932 0.979 0.971 0.984 0.985 0.979 0.978 0.980 0.982 0.984 0.973 0.977 0.980

0.998 0.981 0.952 0.985 0.979 0.986 0.986 0.981 0.981 0.980 0.982 0.983 0.973 0.977 0.980
0.998 0.981 0.952 0.985 0.979 0.986 0.986 0.981 0.981 0.980 0.982 0.983 0.973 0.977 0.980

Full Graph
Empty Graph

Method

Fisher

Aracne

Relevance Networks 1

Relevance Networks 2

SA-CLR

CLR

LGL-Bach

GeneNet

Graphical Lasso
Hierarchical Clustering

qp-graphs

Caveat: LGL-Bach output are most likely to be TFs. LGL-Bach non-returned 
variables are most likely to not be TFs. However other methods will 
return more complete sets at the expense of many false negatives.  



3. Signature/Marker Multiplicity 
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Key reference: 
 
Statnikov A, Aliferis CF. Analysis and Computational Dissection of 
Molecular Signature Multiplicity. PLoS Computational Biology 2010, 
6:e1000790. 



Empirical evaluation: multiplicity 
TIE* Signatures in Comparison with TIE* Signatures in Comparison with 

Other SignaturesOther Signatures
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Multiple s ignatures  output by T IE * 
have optimal predictivity & low 
variance

Multiple s ignatures  output by other 
methods have s ub-optimal 
predictivity & high variance

Multiple s ignatures  output by T IE * 
have optimal predictivity & low 
variance

Multiple s ignatures  output by other 
methods have s ub-optimal 
predictivity & high variance

E ach dot in the plot corresponds  to a 
s ignature (computational model) of the 
outcome: E .g., O utcome(x)=S ign(w∙x+b), 
where x, w ∈ ℜm, b ∈ ℜ, m is  the number 
of genes  in the s ignature.

 
Discovery of not just one of possibly many optimally predictive and maximally compact models 

but also all such predictive models that are maximally predictive, and non-redundant.  
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TIE* signatures in comparison with other signatures 



Empirical evaluation: multiplicity 

87 



4. Example Recent Applications from NYU 

Here are some references with recent GLL/TIE* applications: 
  
• Lytkin NI, McVoy L, Weitkamp JH, Aliferis CF, Statnikov A. Expanding the 

Understanding of Biases in Development of Clinical-Grade Molecular Signatures: A 
Case Study in Acute Respiratory Viral Infections. PLoS ONE, 2011; 6(6): e20662.  

• Alekseyenko AV, Lytkin NI, Ai J, Ding B, Padyukov L, Aliferis CF, Statnikov A. Causal 
Graph-Based Analysis of Genome-Wide Association Data in Rheumatoid Arthritis. 
Biology Direct, 2011 May; 6(1): 25. 

• Narendra V, Lytkin NI, Aliferis CF, Statnikov A. A Comprehensive Assessment of 
Methods for De-Novo Reverse-Engineering of Genome-Scale Regulatory Networks. 
Genomics, 2011 Jan; 97(1): 7-18. 

• Statnikov A, Lytkin NI, McVoy L, Weitkamp JH, Aliferis CF. Using Gene Expression 
Profiles from Peripheral Blood to Identify Asymptomatic Responses to Acute 
Respiratory Viral Infections. BMC Research Notes, 2010 Oct; 3(1): 264. 

• Statnikov A, McVoy L, Lytkin N, Aliferis CF. Improving Development of the 
Molecular Signature for Diagnosis of Acute Respiratory Viral Infections. Cell Host & 
Microbe, 2010 Feb; 7(2): 100-1. 
 



Application in GWAS 

RA 

rs9275390 rs3129871 

HLA-DRA 

rs2476601 

PTPN22 

rs3761847 

TRAF1, C5 
rs13031237 

REL 

rs2793108 

ZEB1 

rs3184504 

SH2B3 

rs8045689 

CD19, NFATC2IPc 

SNPs found by TIE* 

rs660895 

rs7574865 

STAT4 

rs548234 

PRDM1 

rs6822844 

IL2, IL21 
rs3890745 

TNFRSF14 rs951005 

CCL21 
rs10488631 

IRF5 
rs26232 

C5orf30 

rs5754217 

UBE2L3 

rs543174 

IL6R 

rs2872507 

IKZF3c 

rs1120320  

UBASH3A  

rs13119723 

IL2, IL21c 

Other univariately associated SNPs 

rs6910071 

C6orf10 

SNPs without univariate association 

rs2736340 

BLK 



Causal Model Guided Experimental 
Minimization and Adaptive Data Collection 

ODLP vs Other Algorithms: Performance on Simulated Data 
• Benchmark study 
• 58 algorithms/variant from 4 algorithm families. 
• 11 networks of different sizes. 
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Statnikov et al., 2015 (Accepted in JMLR) 



Causal Model Guided Experimental 
Minimization and Adaptive Data Collection 

ODLP vs Other Algorithms: Network Reconstruction Quality 
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Causal Model Guided Experimental 
Minimization and Adaptive Data Collection 

ODLP vs Other Algorithms: Reconstruction Quality & Efficiency 
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Causal Model Guided Experimental 
Minimization and Adaptive Data Collection 

ODLP vs Other Algorithms: Scalability 
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Causal Model Guided Experimental 
Minimization and Adaptive Data Collection 

ODLP vs Other Algorithms: Performance on Real Biological Data 

94 
Ma et al., 2015 (submitted) 



Causal Model Guided Experimental 
Minimization and Adaptive Data Collection 

ODLP vs Other Algorithms: Performance on Real Biological Data 
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Empirical evaluation:  
control of false positives  

Reduction of false discovery rate with superior sensitivity and specificity than 
traditional FDR control 

 
 

 Number of false positives (within irrelevant variables) in the parents and children set for 
features selected by HITON-PC with parameter max-k={0,1,2,3,4} on different training sample 
sizes {100, 200, 500, 1000, 2000, 5000}. The color of each table cell denotes number of false 
positives with green corresponding to smaller values and red to larger ones. 
 
 Lung_Cancer

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
100 0.20 0.00 0.00 0.00 0.00 411.60 1.60 1.50 1.50 1.50 488.80 11.70 8.60 8.60 8.60 411.60 12.70 9.80 9.80 9.80
200 1.50 0.00 0.00 0.00 0.00 488.60 1.20 0.00 0.00 0.00 471.60 14.90 2.90 3.00 3.00 488.60 17.30 5.80 5.50 5.50
500 0.20 0.00 0.00 0.00 0.00 446.00 2.10 0.00 0.00 0.00 424.90 13.30 0.90 1.20 1.40 446.00 28.10 6.40 5.00 4.90
1000 0.50 0.00 0.00 0.00 0.00 422.70 1.60 0.00 0.00 0.00 413.20 12.70 0.20 0.30 0.30 422.70 31.20 6.90 5.30 5.10
2000 0.80 0.00 0.00 0.00 0.00 409.00 1.60 0.00 0.00 0.00 407.90 11.10 0.40 0.00 0.00 409.00 31.80 6.10 4.00 4.00
5000 0.70 0.00 0.00 0.00 0.00 403.10 1.70 0.00 0.00 0.00 397.80 11.80 0.00 0.00 0.00 403.10 30.90 6.20 4.70 4.10

Alarm10

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
100 0.00 0.00 0.00 0.00 0.00 392.10 23.00 22.80 22.80 22.80 408.70 26.20 26.40 26.40 26.40 392.10 23.30 23.40 23.40 23.40
200 0.00 0.00 0.00 0.00 0.00 412.90 5.70 3.80 3.80 3.80 427.80 10.30 6.50 6.50 6.50 412.90 19.30 9.70 9.70 9.70
500 0.00 0.00 0.00 0.00 0.00 411.60 3.90 0.80 0.80 0.80 417.90 14.80 4.40 3.90 3.80 411.60 24.40 6.80 6.60 6.60
1000 0.00 0.00 0.00 0.00 0.00 414.10 2.40 0.90 0.60 0.60 399.90 12.60 3.30 2.80 2.70 414.10 22.70 7.20 6.40 6.30
2000 0.00 0.00 0.00 0.00 0.00 382.00 1.60 0.00 0.00 0.00 380.00 10.10 1.80 1.60 1.50 382.00 25.00 8.80 6.50 5.90
5000 0.00 0.00 0.00 0.00 0.00 381.00 1.40 0.10 0.00 0.00 367.10 7.70 1.00 0.30 0.30 381.00 22.90 6.10 5.00 4.90

max-k parameter

Version 1
(original network)

Version 2 
(original network + irrelevant 

variables)

Version 3
(weakened signal + irrelevant 

variables)

Version 4
(only irrelevant variables)

max-k parameter

Version 1
(original network)

Version 2 
(original network + irrelevant 

variables)

Version 3
(weakened signal + irrelevant 

variables)

Version 4
(only irrelevant variables)

Small number of false positives Large number of false positives



APPLICATION/PROVING GROUND 
#2: LEGAL PREDICTIVE CODING 
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Limitations of Human  
Legal Document Review 

• Error-prone 
– Variation in reviewer expertise 
– Intra- and inter-reviewer coding variation 
– Review overconfidence in performance 
– Limitations of adjunctive key word searches 

 
• Expensive 
• Time consuming 
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Predictive Coding: A Great Example of 
Value of Big Data Analytics 

 
 

When implemented correctly: Faster (often by a factor of 10 or more), 
cheaper (often by a factor of 10 or more), more accurate (from about 60-70% 
accuracy to neighborhood of 95% ) 
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A few Key Findings 
I. Not All Methods Are (or Perform) the Same 

•Results from largest text categorization benchmark in text 
categorization ever produced 
•>240 dataset-tasks 
•30 classification x 20 feature selection algorithms = 600 
main analysis protocols (including commercial engines from 
Oracle, Google, IBM/SPSS, SAP) 
•4 loss functions 
•Nested repeated N-fold cross validation:  

–ensures rich exploration of different ways to parameterize core models;  
–ensures avoidance of over fitting/accurate estimation of predictive accuracy 

•=>millions of models built & tested, 10,000s of state-of-the-
art data analysis setups evaluated 

A Comprehensive Empirical Comparison of Modern Supervised Classification and 
Feature Selection Methods for Text Categorization 
Aphinyanaphongs, Yindalon; Fu, Lawrence D; Li, Zhiguo; Peskin, Eric R; Efstathiadis, 
Efstratios; Aliferis, Constantin F; Statnikov, Alexander 2014 OCT;65(10):1964-1987, 
Journal of the Association for Information Science & Technology id: 1313832, year: 
2014, vol: 65, page: 1964 
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A few Key Findings 
I. Not All Methods Are (or Perform) the Same 
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A Few Key Findings 
I. Not All Methods Are (or Perform) the Same  

1. SVMs, KRR, and BLR are the best performing classifier algorithms on average 
2. There is no single dominant classification algorithm over all datasets  
3. Markov Boundary feature selection achieves best data compression without 

compromising on accuracy.  
4. Loss functions affect classifier rankings (or may require tuning).  
5. It is not only the technology but how it is implemented. e.g., Oracle auto classifier. 
6. Google analytics platform consistently poor performer (better only than Naïve Bayes). 
7.  IBM/SPSS/SAP auto-classifier requires extensive user-provided setup, and is very buggy.  
8. Active Learning often overfits.  
9. Ensembling (i.e., combining results from several classifiers) as implemented in Google 

analytics and IBM/SPSS modeler does not lead to dominant performance.  
10. PLSA methods produce models with highly unstable classification performance.  
11. TREC competition datasets and the performance of winners in that competition are not 

as informative as a full-scale benchmark.  
12. Small scale tests should not be trusted since for any algorithm or analysis setup it is 

easy to find a few datasets where this algorithm seems to outperform other methods.  
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A few Key Findings 
II. Important Aspects Often Overlooked 
• Data Design: how to 

best (fastest, 
cheapest) collect 
data? 
 
 

• Defend the results 
and the process. 
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A few Key Findings 
II. Important Aspects Often Overlooked 
• How to manage risks for false positives and false negatives when 

deciding to stop reviewing documents in the ranked list? 
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Predictive Coding for Discovery 
Example Case Studies 

• F*** (M***) lawsuit.  
 Identification of HOT cases incriminating investment firm as negligent in due  diligence 
 for M** firm investments.  
• D** C** vs. M** L**.  
 The analysis identified documents that indicated whether M** was aware 
 of the state of the auction rate securities (ARS) market and whether M** 
 misrepresented its understanding of the risk and liquidity of the market. 

 Notably, achieved 0.99 AUC in HOT document classification. 
• J*** vs. N***. 
 Undisclosed task. Client only provided labeled documents 
• B*** S***.  

 Multiple PC categories for litigation preparedness.   
• A*** E*** vs Affiliates. 

 Class action lawsuit for fee discrimination. A*** wishing to produce  evidence 
that they did not purposely manipulate their charges to businesses).  Notably  we 
created custom data structures and database to enable PC with the A***  CRM 
software. 
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From:Joseph Cusick 
Sent:Thu 7/29/2010 
To:Gerard Kopera; Daniel Carrigan (Ext - OMX) 
Cc:Ben Craig (Ext - OMX); Garry O'Connor 
Bcc: 
Subject:Newedge - Large Trader Reporting 

 
Gentlemen, 
 
I received a call from Josh Stahl of Newedge. He and two of his colleagues, Kevin Zwart 
and Mike Dempsey, had questions regarding NFX Rule F-8 (documenting the OTC trade 
that’s part of a SwapDrop) and the technical/connectivity requirements for reporting Large 
Trader Positions to NFA. 
 
 
I was able to help them understand Rule F-8, but I wasn’t as knowledgeable on the 
technical mechanics of the Large Trader Position reporting process.  So this is notice that I 
gave them your names as initial contact persons at your respective organizations.  
 
Given the general nature of their questions our organizations may want to consider adding 
both of these topics to an FAQ for new and prospective members. 

 
Thanks, 
Joe 

 
Joseph Cusick 
 
NASDAQ OMX NFX 
Chief Regulatory Officer 
NASDAQ OMX PHLX 
Deputy Chief Regulatory Officer 
Direct: +1 215 496 1576 
Mobile  +1 215 778 2639 
Joseph.cusick@nasdaqomx.com 

 

+ - 

From:Winter, Steven 
Sent:Fri 9/11/2009 
To:John Shay; Lewis, Clifford M; Welch, Denise 
Cc:Garry O'Connor; David Reed 
Bcc: 
Subject:RE: jeffries and co. 
 
Thanks for this and I will reach out to Jason as you suggest 
_____ 
 
From: John Shay [mailto:John.Shay@idcg.com] 
Sent: Friday, September 11, 2009 2:18 PM 
To: Winter, Steven; Lewis, Clifford M; Welch, Denise 
Cc: Garry O'Connor; David Reed 
Subject: jeffries and co. 
 
Hello Steve-  
 
Our good friends at Jeffries would like to directly | discuss with you their desire/need for an 
FCM in cleared IRS. 
 
Please feel free to reach out to|  Jason Kastner ( copied here below)- Jason|  now running 
the desk at Jeffries- and like many of the well capitalized BDs, Jeffries are looking to 
expand their reach back into their old stomping grounds 
 
No more fertile soil | than thru a clearing member in IRS. 
 
More of these types of names to follow and please let us know if there is someone else in 
your team we need to|  have copied on emails for new clients? 
 
Best, 
John 
 
Jason Clark Kastner 
Senior Vice President 
Interest Rate Derivatives 
 
Jefferies & Co. 
520 Madison Ave. 
New York, N.Y. 10022 
212-323-7556 
jkastner@jefferies.com 
 
John Shay | Founder, Head of Sales and Marketing | International Derivatives Clearing 
Group | 150 East 52nd Street, New York, NY 10022 USA | Tel 646-867-2529 | Cell 917-
763-5362 | John.Shay@idcg.com^M 

 

Positive and negative examples 
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Feature AUC Frequency of selection 
during cross-validation 

idcg 0.66 1 
current 0.62 1 
forward 0.616 1 

need 0.612 1 
accept 0.609 1 
float 0.599 1 

jefferi 0.563 1 
drw 0.548 1 

report 0.373 1 
use 0.641 0.98 
re 0.617 0.98 

portfolio 0.597 0.98 
discount 0.568 0.98 
bilater 0.555 0.98 
affirm 0.545 0.98 

fix 0.62 0.94 
construct 0.532 0.94 

pay 0.578 0.92 
par 0.547 0.92 

interest 0.631 0.9 
counterparti 0.587 0.9 

aris 0.571 0.9 
factor 0.569 0.9 
spread 0.554 0.9 

o 0.631 0.88 
rate 0.626 0.88 
basi 0.598 0.88 

exposur 0.561 0.88 
pai 0.554 0.88 

tighter 0.54 0.88 
contract 0.629 0.86 

start 0.606 0.86 
real 0.547 0.86 
limit 0.59 0.84 

interv 0.574 0.84 
abil 0.554 0.84 

Using feature lists for model explanation 
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Explaining coding using word clouds & heat maps 

108 



hot 

present not present 

present not present present not present 

present not present present not present 

present not present present not present 

present not present 

.888 .0047 

.939 

.666 .147 

.775 .159 

.11 

.471 

If a document contains “johnson” 
and “imag*”, then there is a high 
likelihood of it being a hot 
document (.888). 

hot 

johnson 

approv* imag* 

firm* david 

copy* michael 

not hot 

not hot regulat* 

not hot 

hot 

hot 

hot 

not hot 

johnson Imag* 

Document Yes Yes 

Using decision trees for model explanation 
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Threshold Sensitivity Specificity 
Positive 

Predictive 
Value 

Negative 
Predictive 

Value 

# of 
Predicted 
Positives 

# of 
Predicted 
Negatives 

in the Application Corpus 
0.01 0.984 0.222 0.110 0.997 81411 15763 
0.02 0.914 0.550 0.162 0.987 46093 51081 
0.03 0.856 0.647 0.188 0.980 29263 67911 
0.04 0.813 0.712 0.211 0.977 19565 77609 
0.05 0.771 0.752 0.229 0.973 13998 83176 
0.06 0.733 0.787 0.247 0.970 10486 86688 
0.07 0.703 0.813 0.264 0.967 8442 88732 
0.08 0.677 0.838 0.285 0.966 7014 90160 
0.09 0.642 0.856 0.299 0.963 6165 91009 
0.1 0.617 0.870 0.310 0.961 5402 91772 

0.11 0.589 0.882 0.323 0.958 4819 92355 
0.12 0.564 0.893 0.334 0.956 4282 92892 
0.13 0.548 0.903 0.352 0.955 3863 93311 
0.14 0.536 0.911 0.368 0.955 3516 93658 
0.15 0.518 0.917 0.375 0.953 3262 93912 
0.16 0.501 0.922 0.383 0.952 3077 94097 
0.17 0.495 0.928 0.396 0.951 2852 94322 
0.18 0.482 0.931 0.400 0.950 2676 94498 
0.19 0.468 0.934 0.406 0.949 2572 94602 
0.2 0.449 0.937 0.407 0.948 2451 94723 

0.21 0.442 0.940 0.416 0.947 2353 94821 
0.22 0.432 0.944 0.427 0.947 2263 94911 
0.23 0.428 0.947 0.439 0.946 1976 95198 
0.24 0.420 0.950 0.450 0.946 1913 95261 
0.25 0.413 0.953 0.458 0.945 1774 95400 
0.26 0.400 0.955 0.460 0.944 1727 95447 
0.27 0.394 0.958 0.468 0.944 1525 95649 
0.28 0.387 0.960 0.476 0.943 1413 95761 
0.29 0.380 0.962 0.487 0.943 1346 95828 
0.3 0.375 0.965 0.502 0.943 1328 95846 

0.31 0.367 0.967 0.516 0.942 1287 95887 
0.32 0.360 0.968 0.520 0.942 1250 95924 
0.33 0.353 0.970 0.532 0.941 1035 96139 
0.34 0.349 0.972 0.542 0.941 970 96204 
0.35 0.346 0.973 0.554 0.941 946 96228 
0.36 0.341 0.974 0.561 0.940 910 96264 

Managing misclassification risks when using the model results 
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Examining consistency of experts’ labeling by cross-application of models 

111 



Conclusions 

• PC can be used as an efficiency booster or as a 
transformative technology. 

• It can address a variety of client needs including 
cost reduction, production speed accelerator, 
profit margin improvement, market share 
increase, and product de-risking.   

• The technology can also be used for fraud 
detection, insurance risk modeling, and 
numerous other applications in legal and other 
domains. 
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APPLICATION/PROVING GROUND #3: 
HEALTHCARE OPERATIONAL MODELING 
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Value Generation Map 

Quality
, 
Safety, 
Risk 
Managem
ent 

Profitability:  
Market Share, Cost containment 



Insights about the R&D process   
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Insights about the R&D process   

1. Building upon a firm theoretical foundation 
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Insights about the R&D process   

Evidence-based algorithm development 
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Insights about the R&D process   

2. Keeping it real: is the new method motivated 
by a real problem without a solution? Or by a 
real weakness in pre-existing methods? 
How to tell? 

Benchmarking 
• Thorough 
• Realistic 
• Unbiased 
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Insights about the R&D process   

More on benchmarking: does the new 
method/comparator methods really work? When? 

a. Extensive testing (datasets, sample sizes, noise, mv 
etc) 

b. Try to systematically make the algorithm “break” 
c. Respect authors’ setups/protocols 
d. Show all parameterizations 
e. Overall robustness 
f. Even very “naïve” algorithms will often have their 

sweet spot 
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Insights about the R&D process   

3. Keeping it real: does new 
method/comparators fit real life workflows? 
    a. Sometimes it will help rather than hinder.      
    E.g., - directionality vs edge discovery; 
             - allowing acceptable error 
    b. Other times, it makes things harder:  
    E.g., Manipulations’ specificity 
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Insights about the R&D process   

4. Because it may look like it will not (or should 
not) work it does not mean it won’t! Examples: 

a. The problem of multiple hypothesis testing 
b. PC skeleton phase vs MMHC skeleton phase 
c. Learning with epistasis 
d. The power of edge detection 
e. LCN approximating MB 
f. Connectivity/shielding effects 
g. Real life sparseness etc. etc. 
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Insights about the R&D process   

5. We may assume that finding the right parameter 
value will be easy/not overfit; this is not always the 
case. 
6.  Combining techniques even from entirely 
different families occasionally works wonders. E.g.: 
a. CIT based skeleton with Bayesian orientation 

and repair. 
b. Fitting all sorts of classifiers on MB variable sets 
c. Plugging all kinds of CIT inside CIT-based 

algorithms 
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Insights about the R&D process   

7. Pay attention to legitimate problems of 
preexisting work. E.g. SPC vs MMHC 
8. Go deep into the details of prior work. E.g., 
Aracne experiments, K-S, GS, univariate 
associations, etc. 
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Insights about the R&D process   

9. Reuse as much as possible and create an 
interlocking system of modules as much as 
possible.   More useful, coherent, robust 
10. Progressively fix limitations in successive 
generations of algorithms  DAQ the R&D 
…But know what constitutes a minimal advance 
vs a an important advance (incremental or not). 
My advice: do not bother too much with minor 
steps.  
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Insights about the R&D process   
11. There is great value in establishing general properties 
(not just algorithmic ones). E.g. GLL says something about 
a very large number of possible algorithms and 
discourages frivolous modifications while it points to 
potentially serious opportunities for improvements.  
12. Play to your strengths and respect your weaknesses. 
E.g.: my working with CIT framework instead of Bayesian. 
13. Create a team science environment that all ideas 
(from the group and outside) can be challenged from 
within the group and outside. Practice “creative 
disbelief”. Prevent groupthink. 
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Discussion 
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A Pictorial presentation of  
HITON-MB 

(barring speed-up optimizations) 
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B 

A 

C 

E F 

D 

G 

T 

Example Trace of HITON:  

True structure depicted; members of the Markov Blanket of T are cyan 

We have access to training data but not the true structure 
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B 

A 

C 

E F 

D 

G 

T 

1. Identify variables with direct edges to the target T 

B C 

E F 

T 
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A 

C 

E F 

D 

G 

T 

A 

Tentative PC: 

A B C 

B C 

A B 

A is removed because 
⊥(A : T | B, C)  

Iteration 1 

Iteration 2 

Iteration 3 

Iteration 4 
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A 

C 

E F 

D 

G 

T 

Tentative PC (continued): 

E B C 

E B C F 

E B C F G 

E B C F 

Iteration 5 

Iteration 6 

Iteration 7 

Iteration 8 

Algorithm terminates because there are 
not other variables left to consider. 

G is removed because 
⊥(G : T | F)  
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B 

A 

C 

E F 

D 

G 

T 

Symmetry: 

When running the previous procedure for 
B returns: A, T. 
When running the previous procedure for C 
returns: A, T 

When running the previous procedure for E 
returns: D, T. 

When running the previous procedure for F 
returns: G, T. 

Hence all B,C,E,F satisfy symmetry and are 
retained.  
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B 

A 

C 

E F 

D 

G 

T 

2. Repeat previous for all members of PC and take the union of the 
resulting variables to be U.  

B C 

E F 

D T 

A 

G 
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B 

A 

C 

E F 

D 

G 

T 

3. Throw away non-members of the Markov Blanket.  
 A member X of PCPC that is not in PC is a member of the Markov Blanket if there is some 

member of PC Y, such that X becomes conditionally dependent with T conditioned on any 
subset of the remaining variables and Y . 

B C 

E F 

D T 
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B 

A 

C 

E F 

D 

G 

T 

4. If we desire to use the Markov Blanket for classification, eliminate 
any unnecessary variables by using a wrapping approach and cross-
validation.  

B C 

E F 

D T 
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Generalized Learning Frameworks  
(GLL, LGL) 
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GLL-PC: Generalized Local Learning -Parents and 
Children 

1. Start with empty set S of candidates for the true PC set.   
2. Inclusion heuristic function: prioritizes variables for inclusion in S  and throws 

away non-eligible variables 
3. Elimination strategy: removes variables from inside candidate set S 
4. Interleaving strategy: combines #2, and #3  until an exit termination criterion 

met 
5. Symmetry requirement: Eliminate from S after #4 every variable V such that 

when steps #1-4 are run again with V as the target, T is not in the candidate 
set after step #4. 

6. Report the candidate set S 
 

Steps #2,3,4 can be instantiated in infinite ways.   
There are rules that determine the admissible instantiations (which are 

themselves infinite)    
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GLL-PC: Admissibility rules 
1. Start with empty set of candidates.   
2. Inclusion heuristic function: Rank variables for priority for inclusion in the candidate set and 

include the highest-ranked variable(s) according to ANY heuristic ranking function that 
respects the following requirement:  

 All variables that have a direct edge to/from the response variable, are eligible for inclusion in the 
candidate set and each one is assigned a non-zero value by the ranking function. Variables with zero 
values are discarded and never considered again. 

 Variables may be re-ranked after each update of the candidate set, or the original ranking 
may be used throughout the algorithm’s operation.  

3. Elimination strategy: If any variable (inside or outside the candidate set) becomes independent 
of the response variable given any subset of the candidate set, then discard that variable and 
never consider it again (whether it is inside or outside the candidate set). Part of the strategy 
is prioritizing the independence tests. 

4. Interleaving strategy: Iterate inclusion and elimination ANY way you like provided that you stop 
iterating when no variable outside the candidate set is eligible for inclusion and when no 
variable in the candidate set can be removed.  

5. Once iterating has stopped, filter the candidate set using symmetry criterion. 
6. Output candidate set.  
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Respecting the admissibility rules of GLL-PC 

• Obtain correct local causal neighborhood 
(direct causes and direct effects) under the 
following sufficient conditions: 
– Faithful distributions, 
– Correct statistical decisions about independence 

(affected by choice of test, power-size analysis, 
and sample size) 

– Local causal sufficiency (i.e., no confounders 
among direct causes/effects and the target). 
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HITON-PC as instance of GLL-PC 
1. Start with empty set of candidates.   
2. Inclusion heuristic function: Rank variables for priority for inclusion in the candidate 

set by univariate association. Discard variables with zero univariate association. 
Put in the candidate set the first variable.  

3. Elimination strategy: If any variable inside the candidate set becomes independent 
of the response variable given any subset of the candidate set, then remove that 
variable from the candidate set and never consider it again. 

4. Interleaving strategy: perform elimination every time the candidate PC set receives 
a new member.  

5. Once iterating has stopped, filter the candidate set using symmetry criterion. 
6. Output candidate set.  
 
This we call: interleaved HITON-PC with symmetry correction and is a correct 

algorithm.  
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MMPC as instance of GLL-PC 
1. Start with empty set of candidates.   
2. Inclusion heuristic function: Rank each variable for priority for inclusion in the 

candidate set using the maximum of the minimum associations of the variable and 
the target (minimizing over all conditioning subsets of current candidate members 
of PC). Discard variables with zero max-min association with target. Put in the 
candidate set the first variable.  

3. Elimination strategy: If any variable inside the candidate set becomes independent 
of the response variable given any subset of the candidate set, then remove that 
variable from the candidate set and never consider it again.  

4. Interleaving strategy: Perform elimination only once (when the tentative PC cannot 
grow any more). 

5. Once iterating has stopped, filter the candidate set using symmetry criterion. 
6. Output candidate set.  
 
This we call: MMPC with symmetry correction and is a correct algorithm.  
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GLL-MB: Generalized Local Learning –Markov 
Blanket 

1. Start with empty set M of candidates for the true MB set.   
2. Find the PC(T) using GLL-PC. 
3. Find the PC(X) for every member of PC(T). Create the union 

U=Union (PC(Xi)). 
4. Eliminate non-spouses from U using the SGS criterion. 
5. Eliminate non-predictive members of U using a wrapper 

approach.  
 

Steps #2,5 can be instantiated in infinite ways.   
Admissibility requirements: use an admissible GLL-PC and a 

sufficiently powerful wrapper.  
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Respecting the admissibility rules of GLL-
MB 

• Obtain correct minimal Markov Blanket 
(variable set that renders all other variables 
independent of T given the MB) under the 
following sufficient conditions : 
– Faithful distributions, 
– Correct statistical decisions about independence 

(affected by choice of test, power-size analysis, 
and sample size).  
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HITON-MB as instance of GLL-MB 

1. Start with empty set M of candidates for the true MB set.   
2. Find the PC(T) using HITON-PC with symmetry correction (or 

without). 
3. Find the PC(X) for every member of PC(T). Create the union 

U=Union (PC(Xi)). 
4. Eliminate non-spouses from U using the SGS criterion. 
5. Eliminate non-predictive members of U using a backward 

elimination wrapper and the desired classifier and loss 
function.  
 

This we call: interleaved HITON-MB with (or without) symmetry 
correction and is a correct algorithm.  
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LGL: Locally-constrained Global Learning 

1. Find PC(X) for all variables X in data using an 
admissible instantiation of GLL-PC. 

2. Piece together the undirected skeleton. 
3. Use any desired arc orientation scheme to orient 

edges.  
 
#1,3 can be instantiated in infinite ways. If an 

admissible GLL-PC is used in #1, and admissible 
orientation scheme in #3, then the total algorithm 
is admissible. 
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Respecting the admissibility rules of LGL 

• Obtain correct causal graph under the 
following sufficient conditions : 
– Faithful distributions, 
– Correct statistical decisions about independence 

(affected by choice of test, power-size analysis, 
and sample size); alternatively correct statistical 
decisions about graph structure scoring. 

– Causal sufficiency (i.e., no confounders between 
any pair of variables).  
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MMHC: instance of LGL 

1. Find PC(X) for all variables X in data using 
MMPC. 

2. Piece together the undirected skeleton. 
3. Use greedy TABU search and BDeu to orient 

edges.  
 

MMHC is admissible with respect to the 
skeleton but inadmissible with respect to 
orientation. 
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