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Talk Motivation

e |[n 2000 sound and complete computational
causal graph algorithms could be used with up
to approx. 100 variables with conventional
hardware.

e In 2015 analyses with more than 1,000,000
variables (for local graphs) and more than
10,000 variables (for complete graphs) are
routine with very modest hardware.



Goals

(a) Summarize the extraordinary progress

accomplished in the last 2 decades and where
the field is.

(b) R&D process model we used, some insights
about the discovery process, and a few empirical
principles for developing and validating highly
practical algorithms for causal discovery.



Caveats

(a) Emphasize:
local algorithmes,
local-to-global,
Markov Boundary,
multiplicity and
experimentation minimization algorithms.

(b) Perspective heavily influenced by the work done in my
group since 2000 (and our approach to such R&D).




Assumptions

Audience is familiar with:

e Key principles and applications of machine
learning including predictive modeling,
feature selection, probabilistic causal
graphs/causal discovery



Goal #1: Predictive Modeling

e Forecast the future

* Anticipate events

But also:

* Recognize patterns

* Assign objects to predefined categories

e Approximate functions (I/O behavior of
systems)



Goal #1: Predictive Modeling

New Data to Apply the Model to
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1: Predictive Modeling
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Goal #2: Causal Modeling

Recognize causes of events

Recognize complex causal relationships

Predict events that follow interventions
(“manipulations”) of a system

Attribute events to their causes



Goal #2: Causal Modeling

Observational Data
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Causality

 Hard to define philosophically

 Good operational way via hypothetical
Randomized Experiments



Causality without Experiments

* Dismissive attitude: “Correlation is not causation”

C. Aliferis 2015 12



Critique of: “Correlation is not causation” and the strict
& blind adherence to an experimental discovery
approach

1. Some correlations are causative and some are not. Is there a way to
systematically differentiate reliably between the two types? It turns
out there is.

2. Is there a way to infer what effects at least certain manipulations
would have? It turns out there is.

3. REs are neither sound, nor complete. They admit both false positive,
false negative, and true but inflated causal conclusions

4. REs are typically expensive, slow, low-dimensional and unethical or
otherwise infeasible.

Remainder of talk: take a peek at methods that allow causal discovery without experiments, and
combined causal and predictive modeling without experiments.



1.

Generation #1: Simon/Pearl/
Spirtes/Glymour/Scheines/Cooper/Granger

Learn a causal model if no hidden variables
exist

Key references:

J. Pearl “Causality: Models, Reasoning and Inference”.
Cambridge University Press, 2000

P. Spirtes, C. Glymour, R. Scheines “Causation Prediction and
Search”. MIT Press, 1993, 2000

C. Glymour, G. Cooper “Computation, Causation and
Discovery” AAAI Press 1999



We need an adequate language for causal discovery. Causal
Bayesian Networks simplest and most commonly used one

e BN=Graph (Variables (nodes), dependencies (arcs)) + Joint Probability
Distribution + Causal Markov Property

o Causal Markov property captures usual semantics of causality

Markov Property: the probability distribution ofany node N given its parents
Pis independentof any subset of the non-descendent nodes W of N

JPD /\ e.g.,
P(A+, B+, C+)=0.006
A P(A+, B+, C-)=0.014 D 1L{B,C,E,F,G | A}

b s FranErenn
P(A-, B+, C+)=0.240 B, C }
P(A-, B+, C-)=0.160

B C P(A~, B-, C+)=0.240
P(A-, B-, C-)=0.160 ’///\\\i

I J
AnyJPD can be represented in BN form

The original JED Forward: P(D+,I-| A+)=?
P(A+, B+, C+)=0.006\
P(A+, B+, C-)=0.014 Backward: P(A+| C+, D+)=?
A P(A+, B-, C+)=0.054
B (A+, B-, C-)=0.12¢6 + Forward & Backward:
P(2-, B+, C+)=0.240 ) - _
P(A-, B+, C-)=0.160 Upto B(D+,Co| I+, E+)=?
B C g Eiﬂ 57 g+; :g - %ég > Exponential + Arbitrary abstraction/Arbitrary
] -, B-, C-)=0.16 R
Sva‘ mngimn predictors/predicted variables
Becomes: Number of I

P(A+)=0.8 . ot
B(B+ | A+)=0.1 Parameters!
P(B+ | A-)=0.5 I T

; P(C+ | A+)=0.3 .
P(C+ | A-)=0.6 ~
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Causal Modeling: PC Algorithm
a prototypical causal discovery algorithm

PC algorithm: Skeleton Discovery

A.) Form the complete undirected graph C on the vertex set V.
B.)
n=0.
repeat
repeat
select an ordered pair of variables X and Y that are adjacent in C such
that Adjacencies(C,X)\{Y} has cardinality greater than or equal to
n, and a subset S of Adjacencies(C,X)\{Y} of cardinality n, and if

----------------------------------------------------------------------------------

-----------------------------------------------------------------------------

record S in Sepset(X,Y) and Sepset(Y,X);
until all ordered pairs of adjacent variables X and Y such that
Adjacencies(C,X)\{Y} has cardinality greater than or equal to » and all
subsets S of Adjacencies(C,X)\{Y} of cardinality n have been tested for
d-separation;
n=n+1;
until for each ordered pair of adjacent vertices X, Y, Adjacencies(C,X)\{Y} is

of cardinality less than n. P
Sprites et al., 1993



Causal Modeling: PC Algorithm

PC algorithm: Skeleton Discovery, Trace

/C\ //

A —» B /E /
\D ’ \
True Graph Complete Undirected Graph

n=0  No zero order independencies

n=1 First order independencies Resulting Adjacencies
C
Allc 1B AllpiB / N\
ALLE IB clpia A B E

N,

n=2: Second order independencies Resulting Adjacencies

B ILE |{C,D} B /C \E
N,
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Causal Modeling: PC Algorithm

PC algorithm: Orientation

C.) For each triple of vertices X, ¥, Z such that the pair X, Y and the pair Y, Z are each

LU TN NN NN AN AEEEEEEEEEEEEEAEEEEEEEEEEE,

adjacent in C but the pair X, Z are not adjacent in C, 0r1cntX—Y—ZasX—>Y<-Z:1f
and only if Y is not in Sepset(X,Z).
D. repeat
If A ->B,B and C are adjacent, A and C are not adjacent, and there is no
arrowhead at B, then orient B - C as B -> C.
If there is a directed path from A to B, and an edge between A and B, then orient
A-BasA ->B.

until no more edges can be oriented.

A ——B E C-B-D; B-C-E; A

/C\ A-B-C; A-B-D; B/ \E
~ B-D-E. C-E-D \D/



Generation #2: Pearl &
Spirtes/Glymour/Scheines

e Learn a causal model if hidden variables exist
e 2 major algorithms:

1. FCI P. Spirtes et al “Causation Prediction and
Search”. MIT Press, 1993, 2000

2. IC* J. Pearl “Causality: Models, Reasoning and
Inference”. Cambridge University Press, 2000



Problem #1: Scalability

“In our view, inferring complete causal models [...] is
essentially impossible in large-scale data mining
applications with thousands of variables”.

Silverstein, Brin, Motwani, Ullman.

Data Mining and Knowledge Discovery, 2000, pp. 163-
192.

Indeed in 2000 one could use sound causal algorithms
with up to 100 variables with conventional hardware
and slightly more with super computers.



Approaches to Scalability

Special distributions (e.g., multivariate normal, or
Simple Bayes etc.)

Structural constraints (e.g., connectivity)

Incomplete learning (output some but not all
causal relations)

Heuristic search

Focus on skeleton but omit edge orientation
Local learning: learn a local causal neighborhood
Related to local learning: local to global



Local causal learning and relationship
to Prediction

e |deally we wish to blend predictive and causal
modeling because each side has distinct
advantages.

e (Obviously) we do not wish to fall in to the
trap of confusing predictive with causal
knowledge when they do not coincide.

* (Not so obviously) we do not want to use
incoherent models for prediction and causal
inference.



Approach for Hybrid Predictive +
Causal Modeling

The Markov Boundary is the set of
variables that provides a principled @
and mathematically optimal way to

- reduce variable dimensionality, @2 G Q

- achieve optimal predictivity and —
- discover direct causes and effects @ m

for a target/response variable of
interest. ® G 0
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A bit of theory underlying hybrid
causal+predictive modeling

 There is no single definition of relevancy that covers all combinations of
distributions, learners and loss functions (No uniformly optimal filter
algorithm exists).

e |tis not possible to use wrapper (search and estimate) algorithms for
feature selection (No Free Lunch Theorem for feature selection).

e Under broad classes of above, Markov Boundary is optimal predictor set
and coincides with Kohavi and John’s “Strongly Relevant Features”.

* In most distributions, the MB has local causal properties: direct causes +
direct effects + direct causes of the direct effects.

e Technicalities in:

"Towards Principled Feature Selection: Relevance, Filters, and Wrappers". I.
Tsamardinos and C.F. Aliferis. In Proceedings of the Ninth International
Workshop on Artificial Intelligence and Statistics, Key West, Florida, USA,
January 3-6, 2003.



Practical Approach for Hybrid
Predictive + Causal Modeling

e If you know the Markov Boundary you
can use any standard powerful classifier
or regression algorithm to build a Q
predictive model.

* This model will contain all information @2 G @

about the response contained in the full
distribution (ie will be optimally @
predictive)

* Yet by keeping only the MB variable we
can safely ignore unnecessary input ® e
variables (ie MB is smallest set of
optimal predictor variables).

C. Aliferis 2015



Advantageous Properties of Hybrid
Causal-Predictive Analytics 1

Dissect Predictivity vs
Causation

. J—— —— time
var var var
1 1 — 1
va l‘z >. va r2 N va I‘2
varg L varg _ varg
L

- Can reliably differentiate among predictors of P/L vs
causal drivers of P/L {or any other variable)

- Can decipher and overcome collinearities

- Can dissect direct, indirect, and confounded
causation

Univariately predictive ‘ ‘ Rl asiadSly: ‘ ‘ Not predictive and

causal ‘ ‘ predictive
but not causal non causal

- A r LT

but not causal
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Advantageous Properties of Hybrid
Causal-Predictive Analytics 2

Optimal Predictivity and

Parsimony
r',, ‘\\‘
var var ] var -
1 > 1 > 1 .
var, 5| var, ~ar, -7
Va r3 - vVa r3 Va I’3

Markov Boundary induction

- can identify the smallest (or cheapest) most

predictive set for any variable we wish to predict

- can eliminate all useless variables

- can compress predictive models for model
explanation and scalable/convenient use

C. Aliferis 2015



Advantageous Properties of Hybrid
Causal-Predictive Analytics 3

Estimate Effects of Interventions By Blocking Specific
Confounders Revealed by the Causal Graph (“Do Calculus”™)

{ var3 |

“Do calculus”

allows to reliably predict using observational data only, all
identifiable effects of interventions.

E.g., if we conduct Testl what will be the net effect on P/L?

In the example vignette, the Do calculus allows for accurate
estimation once we condition on {Varl (timel), Varil
(time2)} // (this is an application of the so-called “back-door
criterion”)

C. Aliferis 2015 28



Advantageous Properties of Hybrid
Causal-Predictive Analytics 4

Model multiplicity and optimize models

Amenable to parallelization, federated
analysis, sequential analysis and chunking

Sound, sample efficient, and scalable in most
real life distributions

Robust to violation of assumptions



Generation #3: Localized MB
(“Definitional”)

How do we find the MB?

One way is to learn a full causal graph, then look
at parents, children and spouses.

NOT practical.
Kohler-Sahami: heuristic, non-scalable.
K2MB: heuristic, non scalable

Algorithm Grow-Shrink (Margaritis and Thrun
2000) returns Markov Boundary only. Sound but
sample inefficient and non-scalable.



Generation #4: Scalable Localized MB
(Definitional)

 |AMB family.

e Return the MB.

e Sound in faithful distributions.

e Sample inefficient (but more efficient than GS)

e Very Scalable (>1,000,000 variables with conventional
hardware).

e Robust to hidden variables.
* First paper:

"Algorithms for Large Scale Markov Blanket Discovery". I. Tsamardinos, C.F.
Aliferis, A. Statnikov. In Proceedings of the 16th International Florida Artificial
Intelligence Research Society (FLAIRS) Conference, St. Augustine, Florida, USA;
AAAI Press, pages 376-380, May 12-14, 2003.



Generation #5: Localized Edges

Algorithms MMPC and HITON-PC

Return the direct causes and direct effects only

Sound in faithful distributions with no hidden variables locally.
Sample efficient

Very Scalable (>1,000,000 variables with conventional
hardware).

Robust to violations of assumptions.

First papers:

Time and Sample Efficient Discovery of Markov Blankets and Direct Causal Relations". I.
Tsamardinos, C.F. Aliferis, A. Statnikov. In Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Washington, DC, USA; ACM Press, pages
673-678, August 24-27, 2003.

"HITON, A Novel Markov Blanket Algorithm for Optimal Variable Selection”. C. F. Aliferis, |.
Tsamardinos, A. Statnikov. In Proceedings of the 2003 American Medical Informatics Association
(AMIA) Annual Symposium, pages 21-25, 2003.



Causal Modeling: HITON-PC Algorithm (simple

version: without symmetry correction or

Data Causal Network OptlmizatlonS)

12342444
34534567
34534563
45645467
45641754

Discovery
Algorithms

HITON-PC(Data D. Target 1)
“returns parents and children of 77
CurrentPC = {}
Repeat
Find variable V; ¢ CurrentPC that maximizes
association(Vi, T) and admit V,; into CurrentPC
If there 1s a variable X and a subset S of CurrentPC
st. 1L(X:T|S)
remove X from CurrentPC;
do not consider X again for admission
Until no more variables are lett to consider
Return CurrentPC

Trace of HITON-PC

Vi

CurrentPC

X:T|S

Remove

D

{D}

D:T|{}

E

{D.E}

D:T|{E}

E:T|{D}

{D,B}

D:T|{B}

B:T|{D}

{D,B,A}

D:T|{A}

D:T|{B}

D:T|{B,A}

AT|{D}

AT|{B}

A:T|{D,B}

B:T|{D}

B:T|{A)}

B:T|{D,A}

{D,C,B}

D:T|{C}

D:T|{B}

D:T|{B,C}

C:T|{D}

C:T|{B}

C:T|{D,B}

B:T|{D}

B:T|{C}

B:T|{D,C}
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Causal Modeling: Semi-Interleaved HITON-PC
a more efficient implementation

Alporithm Semi-Interleaved HITON-PC (without “symmetry correction’)

Input: dataset [ (a sample from distribution I’) for variables V, including a response variable T.
QOutput: a Markov boundary M of T.
Phase I: Forward

1. Initialize M with an empty set
2. Initialize the set of eligible variables E € V' {T}
3

Repeat
4 Y € argmax g Association(7, X) L.
5 E€E\{Y) * EffICIent, and robust.
6. If there is no subset Z< Msuchthat 7 L Y| Z then e Scalable to very BIG
7 M&E MUY DATA.
8.  Until E 1s empty .
Pl e Easily extended for
Phase 1I: Backward global causal discovery
9. ForeachXe M | with the LGL
10. If there is a subset Z < M | {X} suchthat 7' L X' | Z then framework
1. M€ M\ (X _ T
12 End * An instantiation of the

13. Output M

GLL framework.




Generation #6: Scalable Region

e Learn causal graph (or Markov network) up to
distance k from target T by recursive
application of local algorithmes.



Generation #7:
Parallelizing/Chunking/Distributing/
Sequential Scalable MB (Definitional)

 Framework that allows
— Distributing IAMB-style MB computation among n processors
— Computing IAMB-style MBs in federated databases

— Computing IAMB style MBs when data does not fit in a
processor by chunking data

— Computing IAMB style MBs in sequential series of analyses

Aliferis CF, Tsamardinos I. Method, System, and Apparatus for
Casual Discovery and Variable Selection for Classification. United
States Patent, US 7,117,185 B1, 2006.



Generation #8: Scalable MB
(“Compositional”)

Build MB one edge at a time.
Sound in faithful distributions.
Sample efficient.

Robust to violations of some assumptions (e.g. feedback
loops)

Very saleable (>1,000,000 variables with conventional
hardware)

First papers:
Time and Sample Efficient Discovery of Markov Blankets and Direct Causal Relations". I.
Tsamardinos, C.F. Aliferis, A. Statnikov. In Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Washington, DC, USA; ACM Press, pages
673-678, August 24-27, 2003.
"HITON, A Novel Markov Blanket Algorithm for Optimal Variable Selection”. C. F. Aliferis, |.
Tsamardinos, A. Statnikov. In Proceedings of the 2003 American Medical Informatics Association
(AMIA) Annual Symposium, pages 21-25, 2003.



Generation #9: DAQ Local to Global —
Full Causal Graph — Algorithm MMHC

e Builds local neighborhoods, connects them and then repairs
graph with search and score Bayesian approach

* Sound skeleton in faithful distributions.

e Heuristic orientation, best of class overall quality of graph
discovery

e Sample efficient.
e Discrete variables only.

e \Very scaleable (>10,000 variables with conventional
hardware)

* First paper:
“The Max-Min Hill Climbing Bayesian Network Structure Learning Algorithm”.
I. Tsamardinos, L.E. Brown, C.F. Aliferis. Machine Learning, 65:31-78, 2006.



Generation #10: Generalized Learning
Frameworks: GLL & LGL

e Generalize the algorithms for local causal edges and compositional MB.

* Generalize the divide and conquer approach of MMHC for full causal
graph discovery.

e Generalization in form of generative algorithms that can be instantiated in
an infinity of ways.

 Admissibility rules describe constraints on instantiation that when
followed guarantee soundness.

e Specific new instantiations achieve higher scalability, applicability on
continuous data and even better quality of reconstruction.

Key papers:

“Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification. Part I:
Algorithms and Empirical Evaluation” C.F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos. Journal of
Machine Learning Research, 11(Jan):171- 234, 2010.

“Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification. Part Il: Analysis
and Extensions” Constantin F. Aliferis, Alexander Statnikov, loannis Tsamardinos, Subramani Mani, and Xenofon D.
Koutsoukos . Journal of Machine Learning Research, 11(Jan):235 - 284, 2010.



Generation #11: Target Information
Equivalency & Modeling Multiplicity

In some distributions: not one but many MBs.
No need for determinism!
Distinct from collinearity.

Number of MBs can be exponential to number of
variables!

All MBs have optimal predictive information; all
are irreducible; some have some have more local
causal variables than others; some are more
proximal than others; some are larger than
others.



x, K X,
[ |
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Graph of a causal Bayesian network used to trace the TIE* algorithm.
The network parameterization is provided in Table 8 in Appendix B.
The response variable is T. All variables take values {0,1}. Variables that
contain equivalent information about T are highlighted with the same
color, for example, variables X1 and X5 provide equivalent information
about T; variable X9 and each of the four variable sets {X5,X6}, {X1,X2},
{X1,X6}, {X5,X2} provide equivalent information about T.

C. Aliferis 2015
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Figure 1. The figure describes a class of Bayesian networks that share the same pathway structure (with 3 gene
variables A, B, C and a phenotypic response variable T) and their joint probability distribution obeys the
constraints shown below the structure.
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Statnikov A, Aliferis CF (2010) Analysis and Computational Dissection of Molecular Signature Multiplicity. PLoS Comput Biol 6(5): €1000790.
doi:10.1371/journal.pcbi.1000790
http://127.0.0.1:8081/ploscompbiol/article?id=info:doi/10.1371/journal.pchi.1000790



http://127.0.0.1:8081/ploscompbiol/article?id=info:doi/10.1371/journal.pcbi.1000790

High-level pseudocode of the TIE* algorithm.

Algorithm TIE* (high-level pseudocode)

Inputs: (a) dataset with predictive variables (e.g., genes) and a phenotypic response variable,
(b) base Markov boundary induction (gene/variable selection) algorithm,

Qutput: the set of maximally predictive and non-redundant signatures of the phenotype.

I. Use the base algorithm to learn a Markov boundary M of the phenotype from data for all
measured vanables, Output M,

2. Repeat

3. Generate the smallest subset of variables G of the so far discovered Markov boundaries of the
phenotype such that: (1) G was not considered in the previous iteration of the algorthm, and
(ii) G does not properly include any subset of variables that was generated in the previous
iteration of the algorithm when M, was found not to be a Markov boundary of the phenotype.

4. Use the base algorithm to learn a candidare Markov boundary M,,.. of the phenotype from data
for all measured variables but G.

5. If the phenotypic predictivity of the signature M., 1s at least as good as that of M (estimated
by holdout validation or other unbiased estimator) according to a statistical significance test or
some other criterion, then M., is indeed a Markov boundary of the phenotype and it is output.

6.  Until no subset G can be generated in step 3.

Statnikov A, Aliferis CF (2010) Analysis and Computational Dissection of Molecular Signature Multiplicity. PLoS Comput Biol 6(5): e1000790.
doi:10.1371/journal.pchi.1000790
http://127.0.0.1:8081/ploscompbiol/article?id=info:doi/10.1371/journal.pchi.1000790



http://127.0.0.1:8081/ploscompbiol/article?id=info:doi/10.1371/journal.pcbi.1000790

Generation #11: Target Information Equivalency
& Modeling Multiplicity CONT’'D

e TIE* family of algorithms extracts all MBs in a distribution.

e Sample efficient.

e Sound.

e Scalable (>1,000,000 variables with conventional hardware).

e Like GLL and LGL generative framework describes generative
algorithm, admissibility criteria and meta properties.

* Papers:

“Analysis and Computational Dissection of Molecular Signature Multiplicity”
A. Statnikov, C.F. Aliferis. (Cover Article) PLoS Computational Biology, 2010;
6(5): e1000790.

Algorithms for Discovery of Multiple Markov Boundaries. Alexander Statnikov,
Nikita I. Lytkin, Jan Lemeire, Constantin F. Aliferis; JMLR, 14(Feb):499-566,
2013.



Generation #12: Compositional MBs with
Hidden Variables (Algorithm CIMB)

 |AMB family (definitional MB algortihms)
robust to hidden variables but GLL-MB family
(compositional algorithms) admit false
negatives.

 CIMB is a compositional family that avoids
false negatives.

e Same sample efficiency, soundness and
scalability as GLL-MB.



Generation #13: Experimentation
Minimizing with Algorithm ODLP

e Causal Model-Guided Experimental Minimization and
Adaptive Data Collection

* |ntends to help experimentalists reduce the number of
experiments needed to learn a causal model.

e Especially useful when experimentation is needed to

resolve causal ambiguity that is undiscoverable without
experimentation.

“New Ultra-Scalable and Experimentally Efficient Methods for
Local Causal Pathway Discovery”.

Alexander Statnikov, Mikael Henaff, Nikita Lytkin, Efstratios

Efstathiadis, Eric R. Peskin, Constantin F. Aliferis (to appear in
JMLR)



Simplified view of the Framework:
Observatiﬂnal Datﬂ Experimental Data

Current Draft of Causal Graph
12342444 p ——

34534567 34934567
34534563
34594563
45645467
45641754 31643867
41941754

Continue until

all edges are oriented :@

Causal
Discove ) X
ngﬂrithrn}i Variable Selection  Experimentation
for Experimentaion

Edge Orientation

) R

Updated Draft of Causal Graph

Draft of Causal Graph
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Causal Model Guided Experimental
Minimization and Adaptive Data Collection

The ODLP Algorithm:
Output:

e Local causal pathway (parents and children) of the variable of
interest.

Two Phases:

e |dentify local causal pathway consistent with the data and
information equivalent clusters.

 Adaptively recommend experiments to perform, integrate
experimental results to refine and orient the local causal
pathway.

Statnikov et al., 2015 (Accepted)



Causal Model Guided Experimental
Minimization and Adaptive Data Collection

ODLP: Pseudo Code:

Algorithm ODLP

* Input:

Observational data D°, including a target variable T;
Experimental protocols/methods to manipulate one variable at a time and generate experimental data D"
that quantifies response of the system to the manipulation.

* Output: Local causal pathway of T.

(l, Apply TIE* or iTIE® to the observational data p”to identify all local causal pathways of T consistent with thc\
data.
2. V€ Union of all variables that participate in local causal pathways of T consistent with the data (thisis o
draft of the local causal pathway).
3. Form equivalence clusters over variables in V such that each equivalence cluster contains variables that have
equivalent information about T (this can be accomplished directly from the output or the operation of TIE* or
\__TIEY).
lJ Ify effects of I N
4. Manipulate T and obtain experimental data D", A
5. Mark all variables in V that change in D" due to manipulation of T as “effects”.
Identify direct and other causes of T
6. Repeat
a. Ifthere is an equivalence cluster that contains a single unmarked variable X and all marked variables in
this cluster (if any) are only passengers and/or effects, then mark X as a “direct cause” and go to step 6.
b. Select (according to some heuristic function or at random) an unmarked variable X from an equivalence
cluster.
¢. Manipulate X and obtain experimental data D',
d. If T does not change in D* due to manipulation of X, mark X as a “passenger” and mark all other non-
effect variables that change in D" due to manipulation of X as “passengers”; otherwise mark X as a
“cause”.
7. Until there are no equivalence clusters with unmarked variables.
8. For every cause X, mark X as a “direct cause” if there exist no other cause in the same equivalence cluster

that changes due to manipulation of X; otherwise mark X as an “other cause”.

Identify direct effects of T

9. Repeat
a. Ifthere is an equivalence cluster that contains a single effect variable X which has neither been marked
as “other effect” nor as “direct effect” and other effect variables in this cluster (if any) are only other
effects, then mark X as a “direct effect” and to go step 9.
b. Select (according to some heuristic function or at random) an effect variable X that has neither been
marked as “other effect” nor as “direct effect”.
¢. Manipulate X and obtain experimental data D',
d. Mark all effect variables that change in D" due to manipulation of X and belong to the same equivalence
cluster as “other effects”.
10. Until all effect variables are either marked as “other effects” or “direct effects”. y.

ts of T, 4

The ODLP Algorithm:
Output:

Local causal pathway (parents
and children) of the variable of
interest.

Two Phases:

"Identify local causal pathway )
consistent with the data and
information equivalent
\_clusters. y

/Adaptively recommend )
experiments to perform,
integrate experimental results
to refine and orient the local

\ .causal pathway. )
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Causal Model Guided Experimental
Minimization and Adaptive Data Collection

The ODLP Algorithm Phase I:

e |dentify local causal pathway consistent with the data and
information equivalent clusters (TIE*, iTIE* algorithms).

Definition of target information equivalency: Two subsets of variables X and Y from
V are target information equivalent with respect to a variable 1" iff the following conditions
hold 7 Y X, T )Y, T 1 X|Y,and T L X|Y (Lemeire, 2007).
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Causal Model Guided Experimental
Minimization and Adaptive Data Collection

The ODLP Algorithm Phase I: iTIE*

Algorithm iTIE*

Input: dataset D (a sample from distribution I’) for variables V, including a target variable T.

Output: multiple Markov boundaries of T that exist in I’.

Phase I: Forward

1. Initialize ® with an empty set

2. Initialize M with an empty set

3. Initialize the set of eligible variables E €< V\ T

4. Repeat

5. Y € argmaxy. g Association(T, X)

6. E<E\Y pressnsnsann .

7. If there is no subset Z [ M such that:7" | Y| Z:then

8. M&EMOY T

9, Else if Z exists and the following relations hold[J‘_Y,!J_Z,T_LZJY-

10. Record in ® that Y and Z contain equivalent information with respectto T

11. Until Eis empty

Phase Il: Backward
12. ForeachXe M
13, If there is a subset Z{ M \ X such that 7 L X | Z then

14. M < M\ X

Phase llI: Construction of multiple Markov boundaries
15. Compute the Cartesian product of target information equivalency relations for subsets of M that

are stored in ® to construct multiple Markov boundaries of T
16. Output multiple Markov boundaries of T
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Causal Model Guided Experimental
Minimization and Adaptive Data Collection

The ODLP Algorithm Phase II:

 Adaptively recommend experiments to perform, integrate
experimental results to refine and orient the local causal
pathway. (i.e. Identify Causes, Effects, and Passengers).
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Causal Model Guided Experimental
Minimization and Adaptive Data Collection

ODLP: Identifying effects

 Manipulate T and obtain experimental

data DE.
e Mark all variables in V that change in Dt

due to manipulation of T as effects.

effects
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Causal Model Guided Experimental
Minimization and Adaptive Data Collection

ODLP: direct and indirect effects

Select an effect variable X that has
neither been marked as indirect effect
nor as direct effect.

Manipulate X and obtain experimental
data DE.

Mark all effect variables that change in
DE due to manipulation of X and
belong to the same equivalence cluster
as indirect effects.

The last effect variable in an equivalent
cluster that is not marked as indirect
effect is a direct effect.

Indirect effect
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Causal Model Guided Experimental
Minimization and Adaptive Data Collection

ODLP: Identifying Passengers

e Select an unmarked variable X from an
equivalence cluster.

* Manipulate X and obtain experimental
data DE.

e If Tdoes not change in DE due to
manipulation of X, mark X as a
passenger and mark all other non-effect
variables that change in D due to
manipulation of X as passengers;
otherwise mark X as a cause.

Passengers
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Causal Model Guided Experimental
Minimization and Adaptive Data Collection

ODLP: Identifying Causes

* For every cause X, mark X as a direct
cause if there exist no other cause in
the same equivalence cluster that
changes due to manipulation of X;
otherwise mark X as an Indirect cause.

e |f thereis an equivalence cluster that
contains a single unmarked variable X
and all marked variables in this cluster
(if any) are only passengers and/or
effects, then mark X as a direct cause.
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Generation #14: Generalized
Framework for Parallel/ Chunked/

Sequential/Distributed Processing

e Asin P/D/S/C framework for definitional MB
algorithms but extends to local causal, MB
compositional and TIE algortihms



APPLICATION/PROVING GROUND #1



1. Optimal predictivity and maximum
feature selection parsimony



First Results: General Distributions

e >100 algorithms
e >40 datasets
 Key references

“Local Causal and Markov Blanket Induction for Causal Discovery and
Feature Selection for Classification. Part I: Algorithms and Empirical
Evaluation” C.F. Aliferis, A. Statnikov, |I. Tsamardinos, S. Mani, and X.
D. Koutsoukos. Journal of Machine Learning Research, 11(Jan):171-
234, 2010.

“Local Causal and Markov Blanket Induction for Causal Discovery and
Feature Selection for Classification. Part II: Analysis and Extensions”
Constantin F. Aliferis, Alexander Statnikov, loannis Tsamardinos,
Subramani Mani, and Xenofon D. Koutsoukos . Journal of Machine
Learning Research, 11(Jan):235 - 284, 2010.



Development of maximally parsimonious and maximally predictive
models and predictive variable sets

Predicitivity Reduction
Feature selection method P-value I Nominal winner P-value | Nominal winner
No feature selection 01890 Other <0.0001 HITON-PC
0.9754 Other 0.0046 HITON-PC
RFE: 4 variats 0.8030 Other 0.0042 HITDT\j—P('
0.1312 HITON-PC 0.3634 HITON-PC
0.1008 HITON-PC 0.6816 Other
0.2248 Other 0.0028 HITON-PC
UAF-KruskalWallis-SVM: 4 0.0098 Other 0.0004 HITON-PC
variants 1.0000 HITON-PC 0.1414 HITON-PC
0.3232 HITON-FC 0.3998 HITON-PC
0.0710 Other 0.0018 HITON-PC
UAF-Signal 2Noise-SVM: 4 0.0752 Other 0.0030 HITON-PC
variants 0.4420 HITON-FC 0.7850 HITON-PC
0.2820 HITON-PC 0.6604 HITON-PC
0.5046 Other <0.0001 HITON-PC
. _ - . 09782 HITON-PC <0, 0001 HITON-PC
UAF-Neal-SVAM: 4 variants 0.6980 HITON-PC 0.0044 HITON-PC
03806 HITON-PC 0.0186 HITON-PC
Random Forest Variable 0.6064 HITON-PC 0.3252 HITON-PC
Selection: 2 variants 0.5050 HITON-PC 0.1338 Other
LARS-Elastic Net: 2 variants 1.0000 .(.)Iher 0.1112 HITON-PC
0.0832 HITON-PC 0.5216 Other
0.2032 Other <0.0001 HITON-PC
0.9362 Other <0.0001 HITON-PC
0.4388 Other 0.0014 HITON-PC
. 0.8432 Other 0.0010 HITON-PC
RELIEE: § variants 0.4290 HITON-PC 0.0108 HITON-PC
0.3114 HITON-PC 0.0518 HITON-PC
0.4424 HITON-PC 0.0706 HITON-PC
0.2748 HITON-PC 0.0404 HITON-PC
LO-norm 0.0258 HITON-PC 0.1942 HITON-PC
Forward Stepwise Selection 0.0028 HITON-PC 0.2758 Other
0.7506 HITON-PC <0.0001 HITON-PC
0.6234 HITON-PC <0.0001 HITON-PC
Koller-Sahami: § variants 0.6278 HITON-PC <0.0001 HITON-PC
<0.0001 HITON-PC <0. 0001 Other
0.1278 HITON-PC 0.3856 HITON-PC
0.1236 HITON-PC =0, 0001 HITON-PC
<0.0001 HITON-PC <0, 0001 Other
IAMB: 3 variants <0.0001 HITON-PC <0.0001 Other
<0.0001 HITON-PC 0.1202 Other
K2MB <(0.0001 HITON-FC <0.0001 Other
BLCD-MB <0.0001 HITON-PC <0.0001 Other
FAST-IAMB <0.0001 HITON-PC <0.0001 Other

Classification performance (AUC)

0.9

0.89

0.88

0.86

0.85

¢ g
o>

® HTON-PC with G* test
¢ RFE

0.05 0.1 0.15 0.2
Proportion of selected features
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Simultaneous identification of causative and predictive determinants
of the response variable using induction of Markov Blankets (i.e.,
partial causal graph induction)

HITON-PC-FDR (max k=2)

' HITON-PC-FDR (max k=3}

3 l}.ﬂ;
ITON-PC-FDR (max k=1) !
\ 05 |
. —7 /" HITON-PC-FDR (max k=4
RFE (reduction by 50%) o1 :
. 02 . .
® - L s LARS-EN
By = e - ":l -~y > & (one-versus-rest)
RFE (reduction by 20%) & 05T 02
- - 0.4 06 -
a -‘ —
[ ]
. L ]
’ e o, [ \e e
. > L o T : .
; it b * « LARS-EN
= . o | . e {multiclass)
L o )
UAF-KW-SVM(50%) s . ) :
P 05 g
@ .. i -
08 | \ UAF-S2N-SVIM (20%)
e
]
UAF-KW-SVM(20%)
UAF-S2N-SVM(50%)
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New Results: HT Molecular Data

e 43 dataset-tasks

e GLL algorithm (HITON-PCnonsym instantiation) vs
35 Comparator algorithms including:
— Univariate association + wrapping — based
— PCA-based
— SVM-based (RFE)
— Random Forest —based
— Regularized regression — based
— Various other heuristic



43 dataset-tasks

Num.
Data type Assaying platform Task variables sample

lAdam RIS - SELDI-TOF-MS Dx | 779 | 326
spectromety

Conrads PO (eSS High Resolution QqTOF Dx | 2190 | 216
spectromety

Alexandroy | Oteomics mass- MALDI-TOF Dx | 16331 | 112
spectromety

Ressom1 FICTECITIES - MALDI-TOF Dx | 214 | 150
spectromety

Ressom3 FREIIES i MALDI-TOF Dx | 191 | 123
spectromety

Ressom5 fIETEOIES 2 MALDI-TOF Dx | 250 | 129
spectromety

ghattacharjee Microarray gene expression [Affymetrix HG-U95A Dx 12600 203

:hattacharjee Microarray gene expression [Affymetrix HG-U95A Dx 12600 160

Savage Microarray gene expression /:;fay;etnx HG-133Aand HGY | 55003 | 210

. . |Human LymphDx 2.7k

Davel Microarray gene expression GeneChip Dx 2745 303

Dyrskjotl Microarray gene expression [MDL Human 3k Dx 1381 404

Miller1 Microarray gene expression |Affymetrix HG-U133A Dx 22283 251

Miller2 Microarray gene expression [Affymetrix HG-U133A Dx 22283 247

Miller3 Microarray gene expression |Affymetrix HG-U133A Dx 22283 251

Vijver3 Microarray gene expression |Agilent Hu25K Px 24496 215

Rosenwald4 |Microarray gene expression [Lymphochip Px 7399 227

Rosenwald5 |Microarray gene expression [Lymphochip Px 7399 208

Rosenwald6 |Microarray gene expression [Lymphochip Px 7399 194

. . |Affymetrix Human Exon 1.0

ITaylor2 Microarray gene expression ST Array Dx 43419 150

Blaserl Microbiomics Roche 454 sequencing Dx 660 66

Blaser2 Microbiomics Roche 454 sequencing Dx 660 66

Blaser3 Microbiomics Roche 454 sequencing Dx 660 66




43 dataset-tasks CONT'D

High-throughput LC-MS and
GC-MS

Metabolomics Dx 1061 107

RT-qPCR Px 307 69

Geniom Biochip miRNA Dx 864 57
Agilent-019118 Human miRNA

Microarray 2.0 bx 373 113

ICCDTM miRNA700-V3 Dx 198 290
singhua University

mammalian 2K microRNA Dx 1932 257

Agilent-014693 Human
iGenome CGH Microarray 244A

UCSF Hum Array 2.0 CGH Dx 2143 57

Dx 231021 218

Custom 4K BAC clones array Px 3649 78

UCSF Hum Array 2.0 CGH Dx 2142 98

UCSF Hum Array 2.0 CGH Dx 1934 75

SWEGENE_BAC_32K_Full Dx | 31935 | 103

SWEGENE_BAC_32K_Full Px 31935 84

lllumina HumanMethylation27
BeadChip

Illumina GoldenGate
Methylation Cancer Panel |
Illumina GoldenGate
Methylation Cancer Panel |
Illumina GoldenGate
Methylation Cancer Panel |
Illumina GoldenGate
Methylation Cancer Panel | Dx 1452 174

Dx 27578 540

Dx 1413 109

Dx 1413 176

Dx 1413 215

Illumina GoldenGate
Methylation Cancer Panel | Dx 1452 174

Illumina GoldenGate
Methylation Cancer Panel | Dx 1452 148

Illumina GoldenGate
Methylation Cancer Panel | Dx 1452 89

Illumina GoldenGate
Methylation Cancer Panel | Dx 1452 78

Illumina GoldenGate
Methylation Cancer Panel | Dx 1452 81




Number of selected features

Dataset name Dataset type

Average Proteomics
Microarray
Microbiomics
Metabolomics
miRNA

aCGH

DNA
Methylation
Grand

Classification performance
(AUC)

Average Proteomics
Microarray
Microbiomics
Metabolomics
miRNA
aCGH
DNA
Methylation
Grand

Experimental Results :
Accuracy + Parsimony

K=3
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6.3 6.5 |153.4| 5.6 |432.0|1496.5| 6.5 [416.8| 63.8 |400.5| 34.4 | 379.4 |1469.9| 24.9 |311.8|1857.2| 21.8 |396.9| 5.8 | 45.5 |230.8 | 22.2 |119.3|199.5|1170.9| 462.4 (1641.1
9.9 | 11.0 |1512.0f 8.6 [3502.5(3007.6| 3.8 [2864.4| 3.1 |3421.6| 3.1 |3421.6(3251.1| 531.1|6338.1{5487.3| 9.8 | 63.6 | 1.8 | 30.1 [5178.1| 63.2 [1266.2| 72.9 [5432.7|3389.2|9654.6
3.2 1.7 | 187 ( 15 | 427 | 7.4 1.1 | 74.1 (198.0|341.0( 1.4 | 433 | 1.7 3.1 | 90.9 | 825 | 35 5.7 1.2 | 287 | 30.7 | 155 | 25.5 | 6.0 |165.0( 32.9 |227.9
5.4 21 | 486 | 1.0 |180.1| 0.1 1.2 |2008( 13 | 817 | 13 | 817 | 0.0 (289 |1973( 88 | 175 | 274 | 1.2 (121.3| 2.0 | 58.2 (264.8| 2.6 (430.7| 75.7 |349.0
4.3 3.1 |127.1| 5.3 |3789(381.2| 7.5 [3223| 83 |174.1| 83 |174.1|395.0| 11.0 |142.4|466.0| 12.2 | 28.2 | 2.7 | 24.5 | 68.3 | 26.5 | 66.5 | 130.6 | 480.6 | 262.6 | 514.2
72 42 |assoal 35 20552.{15804. 59 28666. 99 30654. 99 30654.{19289. 117.8 20966./128208. 57 321 | 20 | 36.9 [3396.43317.7 11105. 1531 11341. 1643.9 10362.
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9.1 | 97.7 |2937.4| 28.6 [3026.5(1076.2| 3.5 (3124.2| 5.3 |3073.1| 5.2 |3073.1(541.5|744.4|1233.6(1597.4| 28.7 | 75.0 | 2.2 | 34.9 | 83.8 | 517.4 (1628.2|1131.8(3038.7|1452.6|3289.2
7.7 | 26.9 |1840.4| 10.8 |4988.0(3808.9| 4.6 |6081.7| 26.3 |6537.2| 9.2 |6514.6(4300.2| 342.5 |5434.5(6633.3| 14.9 | 97.1 | 2.5 | 35.6 [2083.3| 657.5 [2485.9| 337.9 (4239.0{1652.3|5430.9
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o w w g o s o [»] s N — ~ a ] I} g E S
k-2 BT T - - - - -~ O~ O - - - T O - O -
s2ls ||y || S |g ||y ||| ||| D|E|g|e|e|2|8|8|2|8|8]E&
= 2 a =) = = = = =) > > > S > = < < ] s S
=) = @ @
0.96410.936 | 0.981 | 0.925|0.972 | 0.984 | 0.943 [ 0.980 | 0.942 | 0.975 | 0.936 | 0.973 [ 0.979 | 0.939 | 0.976 | 0.986 | 0.957 [ 0.977 | 0.922 [ 0.979 | 0.939 | 0.960 | 0.980 | 0.919 | 0.978 | 0.962 | 0.985
0.81910.747 | 0.826 | 0.799 | 0.820 | 0.805 | 0.799 | 0.829 | 0.778 | 0.829 | 0.778 | 0.829 | 0.801 | 0.807 | 0.826 | 0.825 | 0.818 | 0.817 | 0.781 | 0.811 | 0.798 | 0.800 | 0.800 | 0.680 | 0.813 | 0.801 | 0.825
0.8430.699 | 0.749 | 0.732 | 0.780 | 0.624 | 0.719 | 0.755 | 0.672 | 0.615 | 0.767 | 0.697 | 0.692 | 0.708 | 0.746 | 0.806 | 0.827 | 0.799 | 0.760 | 0.758 | 0.713 | 0.691 | 0.690 | 0.559 | 0.639 | 0.570 | 0.602
0.750]0.560 | 0.628 | 0.447 | 0.505 | 0.460 | 0.425 | 0.493 | 0.401 | 0.519 | 0.401 | 0.519 | 0.500 | 0.603 | 0.672 | 0.519 | 0.682 | 0.623 | 0.391 | 0.615 | 0.519 | 0.559 | 0.577 | 0.397 | 0.656 | 0.468 | 0.544
0.92310.894 | 0.942 | 0.896 | 0.934 | 0.949 | 0.893 | 0.922 | 0.900 | 0.937 | 0.900 | 0.937 | 0.945 | 0.911 | 0.916 | 0.948 | 0.920 | 0.933 | 0.898 | 0.922 | 0.843 | 0.895 | 0.916 | 0.833 | 0.921 | 0.907 | 0.935
0.79710.708 | 0.794 | 0.762 | 0.806 | 0.713 | 0.755 | 0.801 | 0.729 | 0.815 | 0.729 | 0.815 | 0.725| 0.802 | 0.829 | 0.826 | 0.751 | 0.771 | 0.724 | 0.793 | 0.735 | 0.744 | 0.781 | 0.666 | 0.749 | 0.696 | 0.792
0.899|0.845 | 0.910 | 0.861 | 0.909 | 0.924 | 0.853 | 0.908 | 0.854 | 0.913 | 0.853 | 0.913 | 0.921 | 0.894 | 0.921 | 0.929 | 0.883 | 0.904 | 0.851 | 0.885 | 0.806 | 0.896 | 0.908 | 0.828 | 0.905 | 0.871 | 0.918
0.865 | 0.797 | 0.864 | 0.822 | 0.861 | 0.837 | 0.820 | 0.860 | 0.807 | 0.856 | 0.812 | 0.861 | 0.842 | 0.844 | 0.869 | 0.876 | 0.849 | 0.858 | 0.810 | 0.851 | 0.802 | 0.832 | 0.846 | 0.745 | 0.842 | 0.811 | 0.853




Experimental Results: over all data types
Predictivity and Parsimony

Predictivity Reduction
Feature Selection Method  P-value Nominal winner P-value Nominal winner
ALL 0.5 Other 0 HITON-PC
SVM_RFE1 0 HITON-PC 0.3764 HITON-PC
SVM_RFE2 0.4508 HITON-PC 0 HITON-PC
UAF_KW1 0 HITON-PC 0.3793 HITON-PC
UAF_KW2 0.3477 HITON-PC 0 HITON-PC
UAF_KW_FDR 0.032 HITON-PC 0 HITON-PC
UAF_SN1 0 HITON-PC 0.0012 Other
UAF_SN2 0.3273 HITON-PC 0 HITON-PC
UAF_BW1 0 HITON-PC 0.0314 HITON-PC
UAF_BW?2 0.2444 HITON-PC 0 HITON-PC
UAF_T1 0 HITON-PC 0.4689 HITON-PC
UAF_T2 0.3651 HITON-PC 0 HITON-PC
UAF_T_FDR 0.0496 HITON-PC 0 HITON-PC
UAF_X21 0.0085 HITON-PC 0 HITON-PC
UAF_X22 0.2633 Other 0 HITON-PC
UAF_X2_FDR 0.0868 Other 0 HITON-PC
mRMR1 0 HITON-PC 0.0011 HITON-PC
mRMR2 0.123 HITON-PC 0 HITON-PC
mRMR3 0 HITON-PC 0.0053 Other
mRMR4 0.0241 HITON-PC 0 HITON-PC
mRMR5 0 HITON-PC 0.0683 HITON-PC
mMRMR6 0.1496 HITON-PC 0 HITON-PC
RFVS1 0.0107 HITON-PC 0.0163 HITON-PC
RFVS2 0.1832 HITON-PC 0 HITON-PC
LARS_EN1 0 HITON-PC 0 Other
LARS_EN2 0.0126 HITON-PC 0 HITON-PC
SIMCA 0 HITON-PC 0 HITON-PC
SIMCA_SVM1 0.0015 HITON-PC 0 HITON-PC
SIMCA_SVM2 0.0244 HITON-PC 0 HITON-PC
PCAl 0 HITON-PC 0 HITON-PC
PCA2 0.0163 HITON-PC 0 HITON-PC
SPCA1 0.0003 HITON-PC 0 HITON-PC
SPCA2 0.1763 HITON-PC 0 HITON-PC
TGDR1 0 HITON-PC 0 Other
TGDR2 0.0164 HITON-PC 0.0224 HITON-PC
TGDR3 0.0667 HITON-PC 0 HITON-PC

reference HPC method: HPC_Z, K=3, alpha=0.05



Experimental Results By Data Type:
Accuracy + Parsimony

Proteomics

HPC_Z ALL SVM_RFE2 UAF_KW_FD UAF_SN2 UAF_T_FDRUAF_X2_FD RFVS2  LARS_EN2 SIMCA_SVM PCA2 SPCA2

R R 2

0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.99

23.02 3,325.83  153.35 1,496.48 416.83 1,469.90 1,857.17 396.85 45.45 119.25 1,170.90 1,641.10
Microarray

HPC_Z ALL SVM_RFE2 UAF_SN2  UAF_BW2 UAF_T2 UAF_X22 UAF_X2_FD SPCA2

R
0.82 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.82
44.42 16,822.31 1,512.00 2,864.38 3,421.65 3,421.65 6,338.10 5,487.31 9,654.64

Microbiomics
HPC_Z

0.85
2.13

Metabolomics
HPC_Z

0.75

5.40



Experimental Results By Data Type:
Accuracy + Parsimony CONT'D

miRNA
HPC_Z
0.95
21.14
aCGH
HPC_Z ALL  UAF_BW2 UAF T2 UAF X22 UAF X2_F mRMR6
DR
0.81 0.83 0.82 0.82 0.83 0.83 0.81
285.17 43'5037'0 30,654.93 30,654.93 20,966.66 28,208.86 53.36
DNA-
Methylation
HPC_Z ALL UAF_KW2 UAF_KW_F UAF_SN2 UAF_BW2 UAF_T2 UAF_T_F UAF_X22 UAF_X2_F mRMR2 SIMCA_SV SPCA2
- SVM_RFE2 - - - - - - — = - - -
DR DR DR M2
0.91 0.92 0.91 0.91 0.92 0.91 0.91 0.91 0.92 0.92 0.93 0.91 0.91 0.92

59.29 4,052.90 2,937.38 3,026.45 1,076.22 3,124.15 3,073.08 3,073.08 54153 1,233.62 1,597.40 224.08 1,628.20 3,289.16

ALL
HPC_zZ UAF_X22 UAF_X2_F
0.87 0.87 0.88

118.59 5,434.46 6,633.34



Experimental Results
Reproducibility

Area under ROC curve absolute nominal difference

K=3
9 s s
- n i o~ - (2}
(=) o — w w
No | Mo | Mo 3 & o 2 £ & S a a P>, P,
Dataset name Q & 9 & Q & E| 2| z z ! ' s < < S S
T < T < I < 3 o 4 © Z o o a a
| *e| 2| | 3 S| 3 s | =
(2] (%]
Beer 0.000 0.001 0.000 0.000 0.000 0.008 0.004 0.002 0.003 0.002 0.000 0.000 0.019 0.130
Su 0.004 0.002 0.002 0.103 0.009 0.040 0.005 0.010 0.038 0.000 0.000 0.000 0.316 0.049
Sotirioul 0.089 0.036 0.002 0.146 0.017 0.099 0.047 0.146 0.061 0.020 0.023 0.041 0.218 0.015
Sotiriou3 0.106 0.023 0.058 0.024 0.010 0.006 0.010 0.144 0.070 0.074 0.133 0.060 0.103 0.000
Freije 0.025 0.053 0.065 0.106 0.106 0.085 0.020 0.004 0.028 0.050 0.107 0.015 0.031 0.013
Ross3 0.156 0.005 0.118 0.149 0.149 0.018 0.121 0.186 0.083 0.068 0.099 0.099 0.141 0.017

Average| 0.063 0.020 0.041 0.088 0.049 0.043 0.035 0.082 0.047 0.036 0.060 0.036 0.138 0.037

Median| 0.057 0.014 0.030 | 0.105 0.014 0.029 0.015 0.077 0.050 0.035 0.061 0.028 0.122 0.016

Min| 0.000 0.001 0.000 | 0.000 0.000 0.006 0.004 0.002 0.003 0.000 0.000 0.000 0.019 0.000

Max| 0.156 0.053 0.118 0.149 0.149 0.099 0.121 0.186 0.083 0.074 0.133 0.099 0.316 0.130

Coefficient of variation| 1.000 1.064 1.175 0.709 1.297 0.945 1.312 1.041 0.629 0.919 0.984 1.088 0.826 1.291

Area under ROC curve statistical difference

K=3
S s s
- un - (3] - (]
o o — w w
o T o % o T = = 2 2 E| E| g a| a| 2 P,
Dataset name g © g © g © 1 I z z “ " s < < o o
Ts|Ts5|=s5| £ | £ | & | & | s | g |[® || | |*
= < = * * 3 3 = =
wv) wv)
Beer 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 0.000 0.000 0.000
Su 0.000 0.000 0.000 0.000 0.000 -0.007  0.000 0.000 -0.029 0.000 0.000 0.000 -0.181  -0.027
Sotirioul 0.000 0.000 0.000 0.000 0.000 -0.019 -0.009 -0.074 -0.074 0.000 -0.022 0.000 0.000 0.000
Sotiriou3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Freije 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ross3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Average| 0.000 | 0.000 0.000 | 0.000 0.000 | -0.004 | -0.002 | -0.013 | -0.017 | 0.000 | -0.004 | 0.000 | -0.030 | -0.004




Experimental Results: Parsimony
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Experimental Results
Classification performance vs random selection

Aweraged over datasets
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2. Network reverse-engineering
methods (Causal Discovery)



Experimental Results

Pathway localization
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Experimental Results

Pathway localization
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Passengers, Drivers, Irrelevant

REGED with 10,000 irrelevant variables

Dataset name

AUC
Number of selected features
Undirected Graph Distance
False Negative Proportion
False Positive Proportion
DC
IC
DE
IE
Passenger
IR

K=3
[
N - o~ [a) o - o~
N 2 ra T “ o — o z < < - ~
(S - | © 3 [~ = I 73 v w w J
a = () | [ - > > ! ! S g g
Ts | S S w < e« e« < < @
© (7} 7, <Dt =) - -

1.000 0.961 1.000 0.990 0.998 0.998 0.998 0.999 1.000 0.967 1.000 0.961 0.971 0.994
15 10999 15 3 5 633 646 7 18 2 24 10999 687 1375
0.000 1.000 0.000 0.000 0.000 0.600 0.601 0.020 0.053 0.000 0.091 1.000 0.645 0.673
0.0% 0.0% 13.3% 80.0% 66.7% 6.7% 6.7% 60.0% 20.0% 86.7% 13.3% 0.0% 53.3% 13.3%
0.0% 100.0% 0.0% 0.0% 0.0% 60.6% 61.1% 0.1% 0.6% 0.0% 05% 100.0% 69.1% 76.3%
P 2 2 1 2 2 2 1 2 1 P p 2 2
0 57 0 0 0 57 56 1 2 0 0 57 56 57
13 13 11 2 3 12 12 5 10 1 11 13 5 11
0 6 0 0 0 6 6 0 3 0 1 6 3 6
0 711 0 0 0 533 538 0 1 0 4 711 621 680
0 10210 2 0 0 23 32 0 0 0 6 10210 0 619




First Results: general Distributions,
MMHC algorithm

e 7 algorithms (13 total variants)

e Applied to >20 simulated data from known
Bayesian networks

e Key reference

“The Max-Min Hill Climbing Bayesian Network
Structure Learning Algorithm”. I.
Tsamardinos, L.E. Brown, C.F. Aliferis.
Machine Learning, 65:31-78, 2006.



Experimental Results — MMHC
Time-Structural errors
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Recent Results: LGL-Bach

15 datasets and gold standards

LGL algorithm (HITON-Back) vs 32 de-novo reverse-engineering methods that work
with genome-scale observational data

Key reference:

“A Comprehensive Assessment of Methods for De-Novo Reverse-Engineering of

Genome-Scale Regulatory Networks” Varun Narendra, Nikita I. Lytkin, Constantin F.
Aliferis, Alexander Statnikov. Genomics, 2010.

Graph: Likelihood of interactions:
e Aracne (2) e Mutual Information (2)
e Relevance Networks (3) e SA-CLR (1)

e SA-CLR (2) e CLR(2)

* CLR(4) e GeneNet (1)

« LGL-Bach (6)

e Hierarchical Clustering (1)
e Graphical Lasso (1)

e GeneNet (2)

* Fisher’sZ(2)

* qgp-graphs (5)

* gp-graphs (5)
e Fisher’sZ (1)



Comparator Methods by family

Univariate:

e Relevance Networks (3)
e CLR (4)

 Fisher’s Z (2)

 Mutual Information (2)

Random/control:
* Full graph (1)
 Empty graph (1)

Multivariate:

*(Aracne (2)
*(SA-CLR (2)

e Hierarchical Clustering (1)

e LGL-Bach (6)

e Graphical Lasso (1)

e GeneNet (2)
* qp-graphs (5)
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5 simulated datasets and gold-standards

Gold-Standard Gene expression data
Dataset . No. of [ No.of | No. of . No. of No. of
Description Description
TFs genes | edges arrays genes
First 500 instances from REGED
REGED |REGED network - | 1000 |1,48 " ' 500 1,000
dataset
Yeast regulatory network from 25 time series with 21 time
GNW(A) g y 157 4,441 | 12,864 | points in each generated by 525 4,441
GNW 2.0
GNW 2.0
25 time series with 21 time
1000-gene subnetwork of Yeast o
GNW(B) g 68 1,000 | 3,221 |points in each generated by 525 1,000
regulatory network from GNW 2.0
GNW 2.0
25 time series with 21 time
GNW(C) |E.coli network from GNW 2.0 166 1,502 | 3,476 |points in each generated by 525 1,502
GNW 2.0
25 time series with 21 time
1000-gene subnetwork of E.coli S
GNW(D) gene stbnetw ' 121 | 1,000 | 2,361 |points in each generated by 525 1,000
regulatory network from GNW 2.0 GNW 2.0




10 real datasets and gold-standards

Gold-Standard

Gene expression data

Dataset L No. of | No. of | No. of . No. of No. of
Description Description
TFs | genes | edges arrays genes
TF-gene interactions from RegulonDB 6.4
ECOLI(A) (strong evidence) 140 | 1,053 | 1,982 | E qqli gene expression
TF-gene interactions from RegulonDB 6.4 dataset from Many 907 4297
ECOLIB) (strong and weak evidence) 174 1 14651 339 | Microbe Microarrays ’
Datab
ECOLI(C) | DREAM2 TF-gene network from RegulonDB 6.0 152 | 1,135 | 3,070 aanase
E.coli gene expression
ECOLI(D) | DREAM2 TF- twork f RegulonDB 6.0 | 152 | 1,146 | 3,091 300 3,456
(©) gene network from Reguion dataset from DREAM2
TF-gene interactions from the Fraenkel lab,
YEAST(A) 116 | 2,779 | 6,455
(=0.001,C=0)
TF-gene interactions from the Fraenkel lab,
YEAST(B) 115 | 2,295 | 4,754
(¢ =0.001,C=1)
YEAST(C) TF-gene interactions from the Fraenkel lab, 15 | 1949 | 3667 Yeast gene expression
(a=0.001,C=2) ’ ’ dataset from Many £30 —
TF-gene interactions from the Fraenkel lab, Microbe Microarrays ’
YEAST(D) 116 | 3,508 | 10,915
(e =0.005,C =0) Database
TF-gene interactions from the Fraenkel lab,
YEAST(E) 115 | 2,872 | 7,491
(a=0.005,C=1)
TF-gene interactions from the Fraenkel lab,
YEAST(F) 115 | 2,372 | 5,448

(. = 0.005, C = 2)




More on real gold-standards

Several studies estimated that E. Coli and Yeast
gold-standards capture up to 80-90% of all TF-
gene relations.

TF-DNA binding interactions do not always imply
functional changes in gene expression.
Condition-dependent transcription and possible
mismatch with gene expression data.

Small changes in expression cannot be reliably
detected by microarrays.

Cellular aggregation and sampling from mixtures
of distributions can hide statistical relations.



Empirical evaluation: causal (mechanism)
discovery. Combined PPV/NPV

Method REGED | GNW(A) | GNW(B) [ GNW/(C) | GNW(D) | ECOLI(A) | ECOLI(B) | ECOLI(C) | ECOLI(D) | YEAST(A) | YEAST(B) | YEAST(C) | YEAST(D) | YEAST(E) | YEAST(F)
Aracne a =107 0.350 | 0.796 | 0.725 0.840 0.864 0.851 0.862 0.826 0.858 0.969 0.970 0.972 0.958 0.962 0.963
a =0.05 0.826 | 0.802 | 0.739 0.841 0.868 0.851 0.862 0.826 0.858 0.969 0.970 0.972 0.958 0.962 0.963
a=10" 0.995 0.953 0.888 0.965 0.942 0.985 0.985 0.980 0.975 0.980 0.982 0.983 0.973 0.977 0.980
Relevance Networks 1
a =0.05 0.997 | 0.981 | 0.950 | 0.985 0.979 0.986 0.986 0.981 0.981 0.980 0.982 0.983 0.973 0.977 0.980
Relevance Networks 2 0.994 | 0.937 | 0.903 0.954 0.948 0.984 0.984 0.979 0.968 0.979 0.981 0.983 0.973 0.977 0.979
SA-CLR a =0.05 0976 | 0.944 | 0.880 | 0.949 0.933 0.960 0.963 0.956 0.953 0.978 0.980 0.982 0.972 0.976 0.978
FDR =0.05 0.718 | 0.858 | 0.762 0.873 0.868 0.899 0.908 0.893 0.882 0.970 0.971 0.974 0.962 0.965 0.968
Normal Ml estimator; a = 0.05 0.963 0.928 0.850 0.933 0.913 0.951 0.957 0.947 0.947 0.979 0.981 0.982 0.973 0.977 0.978
CIR Normal Ml estimator; FDR=0.05 | 0.693 | 0.846 | 0.737 | 0.855 0.849 0.887 0.901 0.879 0.888 0.972 0.972 0.974 0.965 0.969 0.970
Stouffer Ml estimator; a = 0.05 0.975 | 0.934 | 0.858 | 0.939 0.920 0.959 0.963 0.955 0.953 0.979 0.981 0.982 0.973 0.977 0.978
Stouffer Ml estimator; FDR=0.05 | 0.736 | 0.858 | 0.751 0.866 0.859 0.911 0.922 0.907 0.905 0.974 0.975 0.976 0.967 0.971 0.972
max-k = 1, w/o symmetry 0.185 | 0.528 | 0.665 0.720 0.788 0.552 0.577 0.495 0.611 0.949 0.956 0.950 0.936 0.944 0.935
max-k =2, w/o symmetry 0.141 | 0.571 | 0.655 0.724 0.565 0.429 0.400 0.356 0.568 0.939 0.941 0.940 0.930 0.942 0.938
LGL-Bach max-k =3, w/o symmetry 0.127 | 0.553 | 0.655 0.734 0.559 0.540 0.521 0.403 0.578 0.928 0.937 0.927 0.921 0.938 0.928
max-k = 1, with symmetry 0.173 | 0.528 | 0.663 0.722 0.790 0.600 0.609 0.508 0.608 0.950 0.957 0.951 0.938 0.945 0.936
max-k =2, with symmetry 0.105 | 0.556 | 0.655 0.712 0.566 0.509 0.494 0.415 0.557 0.931 0.934 0.923 0.926 0.935 0.921
max-k = 3, with symmetry 0.087 | 0.524 | 0.616 | 0.522 0.543 0.465 0.439 0.378 0.559 0.941 0.938 0.932 0.927 0.933 0.921
Hierarchical Clustering 0.996 0.944 0.850 0.950 0.914 0.960 0.964 0.956 0.956 0.979 0.981 0.982 0.973 0.976 0.979
Graphical Lasso 0.801 | 0.393 | 0.384 | 0.608 0.686 0.805 0.840 0.786 0.301 0.970 0.973 0.973 0.964 0.969 0.966
GeneNet a =0.05 0.975| 0.974 | 0.938 | 0.982 0.972 0.965 0.971 0.961 0.961 0.971 0.972 0.973 0.963 0.967 0.969
FDR =0.05 0.805 | 0.970 | 0.943 0.977 0.969 0.895 0.912 0.887 0.891 0.960 0.961 0.961 0.951 0.956 0.956
g=1 0.996 | 0.979 | 0.946 | 0.984 0.977 0.986 0.986 0.981 0.981 0.980 0.982 0.983 0.973 0.977 0.980
q=2 0.996 0.980 0.949 0.985 0.978 0.986 0.986 0.981 0.981 0.980 0.982 0.983 0.973 0.978 0.980
qp-graphs g=3 0.996 | 0.981 | 0.949 0.985 0.979 0.986 0.986 0.981 0.981 0.980 0.984 0.985 0.973 0.978 0.981
q=20 0.995 | 0.981 | 0.950 | 0.985 0.979 0.986 0.986 0.981 0.981 0.980 0.982 0.983 0.973 0.977 0.980
q =200 0.996 | 0.979 | 0.949 0.983 0.977 0.986 0.986 0.981 0.981 0.980 0.982 0.983 0.973 0.977 0.980
Fisher a =0.05 0.996 | 0.975 | 0.935 0.980 0.972 0.984 0.985 0.979 0.978 0.980 0.982 0.983 0.973 0.977 0.980
FDR =0.05 0.996 0.973 0.932 0.979 0.971 0.984 0.985 0.979 0.978 0.980 0.982 0.984 0.973 0.977 0.980
Full Graph 0.998 | 0.981 | 0.952 0.985 0.979 0.986 0.986 0.981 0.981 0.980 0.982 0.983 0.973 0.977 0.980
Empty Graph 0.998 | 0.981 | 0.952 0.985 0.979 0.986 0.986 0.981 0.981 0.980 0.982 0.983 0.973 0.977 0.980

Caveat: LGL-Bach output are most likely to be TFs. LGL-Bach non-returned
variables are most likely to not be TFs. However other methods will
return more complete sets at the expense of many false negatives.



3. Signature/Marker Multiplicity

Key reference:

Statnikov A, Aliferis CF. Analysis and Computational Dissection of
Molecular Signature Multiplicity. PLoS Computational Biology 2010,
6:21000790.
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Empirical evaluation: multiplicity

Discovery of not just one of possibly many optimally predictive and maximally compact models
but also all such predictive models that are maximally predictive, and non-redundant.

TIE* signatures in comparison with other signatures

Predictivity results for Leukemia 5 yr. prognosis task
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Empirica

Classification performance (AUC) in the discovery dataset
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| evaluation: multiplicity
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4. Example Recent Applications from NYU

Here are some references with recent GLL/TIE* applications:

e Lytkin NI, McVoy L, Weitkamp JH, Aliferis CF, Statnikov A. Expanding the
Understanding of Biases in Development of Clinical-Grade Molecular Signatures: A
Case Study in Acute Respiratory Viral Infections. PLoS ONE, 2011; 6(6): e20662.

 Alekseyenko AV, Lytkin NI, Ai J, Ding B, Padyukov L, Aliferis CF, Statnikov A. Causal
Graph-Based Analysis of Genome-Wide Association Data in Rheumatoid Arthritis.
Biology Direct, 2011 May; 6(1): 25.

 NarendraV, Lytkin NI, Aliferis CF, Statnikov A. A Comprehensive Assessment of
Methods for De-Novo Reverse-Engineering of Genome-Scale Regulatory Networks.
Genomics, 2011 Jan; 97(1): 7-18.

e Statnikov A, Lytkin NI, McVoy L, Weitkamp JH, Aliferis CF. Using Gene Expression
Profiles from Peripheral Blood to Identify Asymptomatic Responses to Acute
Respiratory Viral Infections. BMC Research Notes, 2010 Oct; 3(1): 264.

e Statnikov A, McVoy L, Lytkin N, Aliferis CF. Improving Development of the
Molecular Signature for Diagnosis of Acute Respiratory Viral Infections. Cell Host &
Microbe, 2010 Feb; 7(2): 100-1.




Application in GWAS
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Causal Model Guided Experimental
Minimization and Adaptive Data Collection

ODLP vs Other Algorithms: Performance on Simulated Data
e Benchmark study

e 58 algorithms/variant from 4 algorithm families.

e 11 networks of different sizes.

Statnikov et al., 2015 (Accepted in JMLR)



Causal Model Guided Experimental
Minimization and Adaptive Data Collection

ODLP vs Other Algorithms: Network Reconstruction Quality
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Causal Model Guided Experimental
Minimization and Adaptive Data Collection

ODLP vs Other Algorithms: Reconstruction Quality & Efficiency
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Causal Model Guided Experimental
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Causal Model Guided Experimental
Minimization and Adaptive Data Collection

ODLP vs Other Algorithms: Performance on Real Biological Data
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Ma et al., 2015 (submitted)



Causal Model Guided Experimental
Minimization and Adaptive Data Collection

ODLP vs Other Algorithms: Performance on Real Biological Data

Orientation Discovery Accuracy

~
e
Adjacency Discovery Quality
| |
~

---------- ALCBN
T ALCBN-LN
g HE-GENG

il HE-GENG-LCC
e HE-GENG-LN
Experimental Efficiency(%) [ ODLP

95



Empirical evaluation:
control of false positives

Reduction of false discovery rate with superior sensitivity and specificity than
traditional FDR control

Number of false positives (within irrelevant variables) in the parents and children set for
features selected by HITON-PC with parameter max-k={0,1,2,3,4} on different training sample
sizes {100, 200, 500, 1000, 2000, 5000}. The color of each table cell denotes number of false
positives with green corresponding to smaller values and red to larger ones.

Version 1 L Version2_ Ve_rsion3. Version 4
Lung_Cancer (original network) (original netvx_/ork+|rrelevant (weakened 5|gnal+|rrelevant (only irrelevant variables)
variables) variables)
max-k parameter

Sample size ol1]2]3] 4 o [ 1] 2] 3] 4 0 | 1] 2] 3] 4 o [ 1] 2] 3] 4
100 0.20 0.00 0.00 0.00 0.00{411.60 1.60 1.50 1.50 1.501488.80 11.70 8.60 8.60 8.60|411.60 12.70 9.80 9.80 9.80
200 1.50{0.00 0.00 0.00 0.00{488.60 1.20 | 0.00 0.00 0.00|471.60 14.90 2.90 3.00 3.00/488.60 17.30 5.80 5.50 5.50
500 0.20 0.00 0.00 0.00 0.00(446.00 2.10 A 0.00 0.00 0.00]424.90 13.30 0.90 1.20 1.40|446.00 28.10 6.40 5.00 4.90
1000 0.50 0.00 0.00 0.00 0.00{422.70 1.60 ' 0.00 0.00 0.00]413.20 12.70 0.20 0.30 0.30|422.70 31.20 6.90 5.30 5.10
2000 0.80/0.00 0.00 0.00 0.00{409.00 1.60 [ 0.00 0.00 0.00|407.90 11.10 0.40 0.00 0.00/409.00 31.80 6.10 4.00 4.00
5000 0.700.00 0.00 0.00 0.00{403.10 1.70 [ 0.00 0.00 0.00{397.80 11.80/ 0.00 0.00 0.00]403.10 30.90 6.20 4.70 4.10

Version 1 .. Versionz_ Ve_rsions_ Version 4
Alarm10 (original network) (original netv\_/ork+|rrelevant (weakened 5|gnal+|rrelevant (only irrelevant variables)
variables) variables)
max-k parameter

Sample size ol1f[2]3]4] o] 1] 2]3]4 0o | 1] 2] 3] 4 o [ 1] 2] 3] 4
100 0.00 0.00 0.00 0.00 0.00{392.10 23.00 22.80 22.80 22.80]408.70 26.20 26.40 26.40 26.40{392.10  23.30 23.40 23.40 23.40|
200 0.00 0.00 0.00 0.00 0.00{412.90 5.70 3.80 3.80 3.80|427.80 10.30 6.50 6.50 6.50 [412.90 19.30 9.70 9.70 9.70
500 0.00 0.00 0.00 0.00 0.00{411.60 3.90 0.80 0.80 0.80|417.90 14.80 4.40 3.90 3.80|411.60 24.40 6.80 6.60 6.60
1000 0.00 0.00 0.00 0.00 0.00{414.10 2.40 0.90 0.60 0.60]399.90 12.60 3.30 2.80 2.70|414.10 22.70 7.20 6.40 6.30
2000 0.00 0.00 0.00 0.00 0.00{382.00 1.60 0.00 0.00 0.00|380.00 10.10 1.80 1.60 1.50 |382.00 25.00 8.80 6.50 5.90
5000 0.00 0.00 0.00 0.00 0.00{381.00 1.40 0.10 0.00 0.00(367.10 7.70 1.00 0.30 0.30]381.00 22.90 6.10 5.00 4.90

Small number of false positives Large number of false positives



APPLICATION/PROVING GROUND
#2: LEGAL PREDICTIVE CODING



Limitations of Human
Legal Document Review

* Error-prone
— Variation in reviewer expertise
— Intra- and inter-reviewer coding variation
— Review overconfidence in performance

— Limitations of adjunctive key word searches

e Expensive

* Time consuming



Predictive Coding: A Great Example of
Value of Big Data Analytics

Model Training Model Testing Model Application
Input Input Input
*— Training set design 1. Fresh Labeled Documents 1. Unlabeled Documents
Labeled Documents 2. Classifier Model 2. Classifier Model
Feature Extraction, Feature Extraction and Feature Extraction and
Document Representation, Document Document
Feature Selection Representation Representation
Computer Constructs a Class Hide Labels and Apply Classifier Fre
Separating Model ({Classifier): Model to Infer Them; Compare P R RS A e SRy
Model Selection, Classifier fit Inferred to True Labels Infer Labels
Output
Output ) Accurac:Scores Output ‘*
Classifier Model . Labeled Documents
Model explanation

* Attorney Participation

When implemented correctly: Faster (often by a factor of 10 or more),
cheaper (often by a factor of 10 or more), more accurate (from about 60-70%
accuracy to neighborhood of 95% )
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A few Key Findings
l. Not All Methods Are (or Perform) the Same

*Results from largest text categorization benchmark in text
categorization ever produced

*>240 dataset-tasks

30 classification x 20 feature selection algorithms = 600
main analysis protocols (including commercial engines from
Oracle, Google, IBM/SPSS, SAP)

4 loss functions

*Nested repeated N-fold cross validation:

—ensures rich exploration of different ways to parameterize core models;
—ensures avoidance of over fitting/accurate estimation of predictive accuracy

*=>millions of models built & tested, 10,000s of state-of-the-
art data analysis setups evaluated

A Comprehensive Empirical Comparison of Modern Supervised Classification and
Feature Selection Methods for Text Categorization

Aphinyanaphongs, Yindalon; Fu, Lawrence D; Li, Zhiguo; Peskin, Eric R; Efstathiadis,
Efstratios; Aliferis, Constantin F; Statnikov, Alexander 2014 OCT;65(10):1964-1987,

Journal of the Association for Information Science & Technology id: 1313832, year:
2014, vol: 65, page: 1964



A few Key Findings
l. Not All Methods Are (or Perform) the Same

AUC  Precision Recall F

SVM_LibSVM Linear Fixed C=1 05 0% 057 06
SVM _LibSVM _Linear Optimized C 055 06l 039 045
SVM LibSVM Poly Optimized C 0% 065 041 048

SVM _LibSVM_Weighted Linear Fixed C=1 055 05 061 06
SVM LibSVM Weighted Linear Optimized C | 0% 072 062 063
SVM LibSYM Weighted Poly Optimized ¢ | 09 072 061 062

SVM_LibLinear_Linear Fixed C=1 02 0% 055 02
SVM LibLinear Linear Optimized C 0,93 0,77 0,35 0,62
KRR Poly Optimized C 0,95 0,69 0,24 0,32

Naive Bayes 0,79 0,01 0,62 0,57 _
LR LibLinear L1 Regularized Optimized C 0,93 078 062 068
[R LibLinear L2 Regularized Optimized C 0,93 0,80 0,52 0,60
BER 0,96 0,83 0,30 0,59

Google Prediction APl 091 059 046 050 | ee——
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A Few Key Findings

l. Not All Methods Are (or Perform) the Same

0 0 N Uk

12.

SVMs, KRR, and BLR are the best performing classifier algorithms on average
There is no single dominant classification algorithm over all datasets

Markov Boundary feature selection achieves best data compression without
compromising on accuracy.

Loss functions affect classifier rankings (or may require tuning).

It is not only the technology but how it is implemented. e.g., Oracle auto classifier.
Google analytics platform consistently poor performer (better only than Naive Bayes).
IBM/SPSS/SAP auto-classifier requires extensive user-provided setup, and is very buggy.
Active Learning often overfits.

Ensembling (i.e., combining results from several classifiers) as implemented in Google
analytics and IBM/SPSS modeler does not lead to dominant performance.

. PLSA methods produce models with highly unstable classification performance.
11.

TREC competition datasets and the performance of winners in that competition are not
as informative as a full-scale benchmark.

Small scale tests should not be trusted since for any algorithm or analysis setup it is
easy to find a few datasets where this algorithm seems to outperform other methods.



e Data Design: how to

A few Key Findings

best (fastest,

cheapest) collect

data?

Defend the results
and the process.

Training sample | ManageTrueHOT, | Accuracy &Cost Praenditions
false HOT, Missed HOT

Human Nosample; Not managed Very low accuracy, very  Large numbers of human
applied on all data high cost reviewers can be tralnedfor
taskin short time
Keywords Nosample; Not managed Very low accuracy,
appliedon all data madium-high cost

Keywords, Various Not managed Very low accuracy, Sameasin companent parts.

then Predictive medium cost

Coding o

human

Random Random Accuratelymanaged  High sccuracy loweost  HOT documents not extremal : .
[sa ’ ‘ et peeyox e ‘]:f Ideal (if feasible)

mpling rare
| CasaControl  Nonrandom Not managed Highaccuracy, lowcost  HOT documents set identified
independently

Seeded Norwrandom Not managed Medium-highaceuracy, HOT documents st identified SECOI']CI bEST |f Raﬂdom

[terative medium-low cost Independently L ‘ f b‘
Hor- Non-random Not managed Highaccuracy, lowcost  HOT dacuments not extremely i Samp mg nOt EasInie

Augmented rare + HOT documents set

Random identified independently - i

Sampling

Method to Explain

Human Rater-Specific Models
MFDR = Meta Learning + Feature

Selection + Decision Trees + Rules S
fuild
or
Paent | Feat, | Feay | Featy |1 ©™
e = st | Fest | diagn Patient | Feal; | Featy VM
pradiction
1 L
" 1 SVMg,
| I
T
N =
N SVMpy
Build
Svm =
Patienl | Featl, | Featy | Feats :F"i‘\::nn:
Run S¥M 1 I svmp, |

Regular Learning

T .

. Important Aspects Often Overlooked
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A few Key Findings
Il. Important Aspects Often Overlooked

* How to manage risks for false positives and false negatives when
deciding to stop reviewing documents in the ranked list?

If a classifier is built well, is calibrated, validated, and we know the prevalence of
HOT in the population somethingvery important happens:
* \We can calculatethat if we accept the first Kk documents then
- we will have found a specific number of HOT documents
- we will have a specific number of false positives
- we will have missed a specific number of HOT documents

* Thus, we can decide where to stop and thus manage our effort against missing
an acceptablysmall number of HOT documents.

Stop threshold

| Low € Score —High |
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Predictive Coding for Discovery
Example Case Studies

F*** (M***) lawsuit.

Identification of HOT cases incriminating investment firm as negligent in due diligence
for M** firm investments.

D** C** yg. M** **
The analysis identified documents that indicated whether M** was aware

of the state of the auction rate securities (ARS) market and whether M **
misrepresented its understanding of the risk and liquidity of the market.

Notably, achieved 0.99 AUC in HOT document classification.
JRkE o KKK

Undisclosed task. Client only provided labeled documents

Multiple PC categories for litigation preparedness.
A¥F* Exxx vy Affiliates.

Class action lawsuit for fee discrimination. A*** wishing to produce evidence
that they did not purposely manipulate their charges to businesses). Notably  we
created custom data structures and database to enable PC with the A*** CRM

software.



Positive and negative examples

From: From:
T Cc
Co S Bec:

: Subject:RE: jeffries and co.
Bee:
Subject:Newedge - Large Trader Reporting Thanks for this and | will reach out to Jason as you suggest
Gentlemen, From: I

. . . To: Wlnter even,; Lewis, orl , Welch, Denise

| received a call from JowrommroRmeweRge. He and two of his colleagues i Cc: u
and FwesmEmERRy, had questions regarding NFX Rule F-8 (documenting the OTC trade Subject: jeffries and co.
that’s part of a SwapDrop) and the technical/connectivity requirements for reporting Large Hello TN
Trader Positions to NFA.

Our good friends at Jeffries would like to directly | discuss with you their desire/need for an
FCM in cleared IRS.

I was able to help them understand Rule F-8, but | wasn’t as knowledgeable on the Please feel free to reach out to| i ( copied here beloviJlllh| now running
hnical hanics of the L Trader Positi i So this is notice that | the desk at Jeffries- and like many of the well capitalized BDs, Jeffries are looking to
technical mechanics of the Large Trader Position reporting process. So this is notice tha expand their reach back into their old stomping grounds

gave them your names as initial contact persons at your respective organizations.
No more fertile soil | than thru a clearing member in IRS.

Given the general nature of their questions our organizations may want to consider adding More of these types of names to follow and please let us know if there is someone else in
both of these topics to an FAQ for new and prospective members. your team we need to| have copied on emails for new clients?

Thanks,
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Using feature lists for model explanation

Frequency of selection

Feature AUC during cross-validation
idcg 0.66 1
current 0.62 1
forward 0.616 1
need 0.612 1
accept 0.609 1
float 0.599 1
jefferi 0.563 1
drw 0.548 1
report 0.373 1
use 0.641 0.98
re 0.617 0.98
portfolio 0.597 0.98
discount 0.568 0.98
bilater 0.555 0.98
affirm 0.545 0.98
fix 0.62 0.94
construct 0.532 0.94
pay 0.578 0.92
par 0.547 0.92
interest 0.631 0.9
counterparti 0.587 0.9
aris 0.571 0.9
factor 0.569 0.9
spread 0.554 0.9
o 0.631 0.88
rate 0.626 0.88
basi 0.598 0.88
exposur 0.561 0.88
pai 0.554 0.88
tighter 0.54 0.88
contract 0.629 0.86
start 0.606 0.86
real 0.547 0.86
limit 0.59 0.84
interv 0.574 0.84
abil 0.554 0.84
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Explaining coding using word clouds & heat maps
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Using decision trees for model explanation

not present m present

-
approv*
not present present not present present
firm* david hot
not present present not present present .0047 .888
michael copy* hot
not present present  .471 not present present .939 mm
regulat* hot
" 4 coe If a document contains “johnson”
: not present present ' ' and “imag*”, then there is a high
likelihood of it being a hot
document (.888).
hot
.159 775
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Managing misclassification risks when using the model results

Positive Negative # ?f # ?f

Threshold Sensitivity Specificity Predictive Predictive I;rec'hf:ted Predu':'ted

ositives Negatives

Value Value in the Application Corpus
0.01 0.984 0.222 0.110 0.997 81411 15763
0.02 0.914 0.550 0.162 0.987 46093 51081
0.03 0.856 0.647 0.188 0.980 29263 67911
0.04 0.813 0.712 0.211 0.977 19565 77609
0.05 0.771 0.752 0.229 0.973 13998 83176
0.06 0.733 0.787 0.247 0.970 10486 86688
0.07 0.703 0.813 0.264 0.967 8442 88732
0.08 0.677 0.838 0.285 0.966 7014 90160
0.09 0.642 0.856 0.299 0.963 6165 91009
0.1 0.617 0.870 0.310 0.961 5402 91772
0.11 0.589 0.882 0.323 0.958 4819 92355
0.12 0.564 0.893 0.334 0.956 4282 92892
0.13 0.548 0.903 0.352 0.955 3863 93311
0.14 0.536 0.911 0.368 0.955 3516 93658
0.15 0.518 0.917 0.375 0.953 3262 93912
0.16 0.501 0.922 0.383 0.952 3077 94097
0.17 0.495 0.928 0.396 0.951 2852 94322
0.18 0.482 0.931 0.400 0.950 2676 94498
0.19 0.468 0.934 0.406 0.949 2572 94602
0.2 0.449 0.937 0.407 0.948 2451 94723
0.21 0.442 0.940 0.416 0.947 2353 94821
0.22 0.432 0.944 0.427 0.947 2263 94911
0.23 0.428 0.947 0.439 0.946 1976 95198
0.24 0.420 0.950 0.450 0.946 1913 95261
0.25 0.413 0.953 0.458 0.945 1774 95400
0.26 0.400 0.955 0.460 0.944 1727 95447
0.27 0.394 0.958 0.468 0.944 1525 95649
0.28 0.387 0.960 0.476 0.943 1413 95761
0.29 0.380 0.962 0.487 0.943 1346 95828
0.3 0.375 0.965 0.502 0.943 1328 95846
0.31 0.367 0.967 0.516 0.942 1287 95887
0.32 0.360 0.968 0.520 0.942 1250 95924
0.33 0.353 0.970 0.532 0.941 1035 96139
0.34 0.349 0.972 0.542 0.941 970 96204
0.35 0.346 0.973 0.554 0.941 946 96228
0.36 0.341 0.974 0.561 0.940 910 96264
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walidation WARM Docs Hot Docs

Validation NOT RELEVANT Docs

Examining consistency of experts’ labeling by cross-application of models

Train WARM + Train NOT RELEVANT Model Applied to HOT Documents AUC=0.9874

o=

Train WARM + Train NOT RELEVANT Model Applied to Validation WARM Documents AUC=0.9929

B LA TR )

[
0.500.73.00

o=

Train WARM + Train NOT RELEVANT Model Applie

d to Validation NOT RELEVANT Documents
3 T T o -

Scores (Log scale)

“alidation WiaRR Docs

“hlidation NOT RELEWANT Docs

HOT / Train MOT RELEVANT Model Applied to Validation WARM Docs (AUC=0883)
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Conclusions

e PC can be used as an efficiency booster or as a
transformative technology.

* |t can address a variety of client needs including
cost reduction, production speed accelerator,
profit margin improvement, market share
increase, and product de-risking.

 The technology can also be used for fraud
detection, insurance risk modeling, and
numerous other applications in legal and other
domains.
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APPLICATION/PROVING GROUND #3:
HEALTHCARE OPERATIONAL MODELING



Quality

Safety,
Risk
Managem
ent

Value Generation Map

A > B
D 2
C D
Profitability:

Market Share, Cost containment
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Insights about the R&D process



Insights about the R&D process

1. Building upon a firm theoretical foundation

C. Aliferis 2015 117



Insights about the R&D process

Evidence-based algorithm development

In Medicine there is a hierarchy of Similarly for Analytics
Evidence

Meta.
Analysis
Systematic
Review

[ Randomized
Controlled Trial

Cohort studies

Case Control studies

Case Series/Case Reports

Animal research

C. Aliferis 2015 118



Insights about the R&D process

2. Keeping it real: is the new method motivated
by a real problem without a solution? Or by a
real weakness in pre-existing methods?

How to tell?
Benchmarking

 Thorough
e Realistic
e Unbiased



Insights about the R&D process

More on benchmarking: does the new
method/comparator methods really work? When?

d.

S D a0 T

Extensive testing (datasets, sample sizes, noise, mv
etc)

Try to systematically make the algorithm “break”
Respect authors’ setups/protocols

Show all parameterizations

Overall robustness

Even very “naive” algorithms will often have their
sweet spot



Insights about the R&D process

3. Keeping it real: does new
method/comparators fit real life workflows?

a. Sometimes it will help rather than hinder.
E.g., - directionality vs edge discovery;
- allowing acceptable error
b. Other times, it makes things harder:
E.g., Manipulations’ specificity



Insights about the R&D process

4. Because it may look like it will not (or should
not) work it does not mean it won’t! Examples:

d.

™ D Qo0 T

The problem of multiple hypothesis testing
PC skeleton phase vs MMHC skeleton phase
Learning with epistasis

The power of edge detection

LCN approximating MB
Connectivity/shielding effects

Real life sparseness etc. etc.



Insights about the R&D process

5. We may assume that finding the right parameter

value will be easy/not overfit; this is not always the
case.

6. Combining techniques even from entirely
different families occasionally works wonders. E.g.:

a. CIT based skeleton with Bayesian orientation
and repair.

b. Fitting all sorts of classifiers on MB variable sets

c. Plugging all kinds of CIT inside CIT-based
algorithms



Insights about the R&D process

7. Pay attention to legitimate problems of
preexisting work. E.g. SPC vs MMHC

8. Go deep into the details of prior work. E.g.,
Aracne experiments, K-S, GS, univariate
associations, etc.



Insights about the R&D process

9. Reuse as much as possible and create an
interlocking system of modules as much as
possible. =» More useful, coherent, robust

10. Progressively fix limitations in successive
generations of algorithms =» DAQ the R&D

...But know what constitutes a minimal advance
VS a an important advance (incremental or not).
My advice: do not bother too much with minor
steps.



Insights about the R&D process

11. There is great value in establishing general properties
(not just algorithmic ones). E.g. GLL says something about
a very large number of possible algorithms and
discourages frivolous modifications while it points to
potentially serious opportunities for improvements.

12. Play to your strengths and respect your weaknesses.
E.g.: my working with CIT framework instead of Bayesian.

13. Create a team science environment that all ideas
(from the group and outside) can be challenged from
within the group and outside. Practice “creative
disbelief”. Prevent groupthink.



Discussion



A Pictorial presentation of
HITON-MB
(barring speed-up optimizations)
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Example Trace of HITON:
True structure depicted; members of the Markov Blanket of T are cyan

We have access to training data but not the true structure

A
7\
T
¢ »
E

haN
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1.

haN

Identify variables with direct edges to the target T

A
/
e

\/'<Q

N\

®
.

o
® ©
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Tentative PC:

Iteration 1

Iteration 2

Iteration 3

A 1S removed because
1(A:T|B,C)

Iteration 4
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Tentative PC (continued):

Iteration 5

Iteration 6

Iteration 7

Iteration 8

G i1s removed because

/ 1L(G:T|F)

Algorithm terminates because there are
not other variables left to consider.
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Symmetry:
When running the previous procedure for
B returns: A, T.

When running the previous procedure for C
returns: A, T

When running the previous procedure for E
returns: D, T.

When running the previous procedure for F
returns: G, T.

Hence all B,C,E,F satisfy symmetry and are
retained.
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2. Repeat previous for all members of PC and take the union of the
resulting variables to be U.

A
7\
T
¢ »
E

A
/ \@

B
\@x®

/

haN
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3. Throw away non-members of the Markov Blanket.

A member X of PCPC that is not in PC is a member of the Markov Blanket if there is some
member of PC Y, such that X becomes conditionally dependent with T conditioned on any
subset of the remaining variablesand Y .

7N

o
o

Nl e
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4. If we desire to use the Markov Blanket for classification, eliminate

any unnecessary variables by using a wrapping approach and cross-

validation.

A
7\
T
¢ »
E

haN

)
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o
N
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Generalized Learning Frameworks
(GLL, LGL)
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GLL-PC: Generalized Local Learning -Parents and
Children

1. Start with empty set S of candidates for the true PC set.

2. Inclusion heuristic function: prioritizes variables for inclusion in S and throws
away non-eligible variables

3. Elimination strategy: removes variables from inside candidate set S

4. Interleaving strategy: combines #2, and #3 until an exit termination criterion
met

5. Symmetry requirement: Eliminate from S after #4 every variable V such that
when steps #1-4 are run again with V as the target, T is not in the candidate
set after step #4.

6. Report the candidate set S

Steps #2,3,4 can be instantiated in infinite ways.

There are rules that determine the admissible instantiations (which are
themselves infinite)
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GLL-PC: Admissibility rules

1. Start with empty set of candidates.

2. Inclusion heuristic function: Rank variables for priority for inclusion in the candidate set and
include the highest-ranked variable(s) according to ANY heuristic ranking function that
respects the following requirement:

All variables that have a direct edge to/from the response variable, are eligible for inclusion in the
candidate set and each one is assigned a non-zero value by the ranking function. Variables with zero
values are discarded and never considered again.
Variables may be re-ranked after each update of the candidate set, or the original ranking
may be used throughout the algorithm’s operation.

3. Elimination strategy: If any variable (inside or outside the candidate set) becomes independent
of the response variable given any subset of the candidate set, then discard that variable and
never consider it again (whether it is inside or outside the candidate set). Part of the strategy
is prioritizing the independence tests.

4. Interleaving strategy: Iterate inclusion and elimination ANY way you like provided that you stop
iterating when no variable outside the candidate set is eligible for inclusion and when no
variable in the candidate set can be removed.

5. Once iterating has stopped, filter the candidate set using symmetry criterion.
6. Output candidate set.
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Respecting the admissibility rules of GLL-PC

e Obtain correct local causal neighborhood
(direct causes and direct effects) under the
following sufficient conditions:

— Faithful distributions,

— Correct statistical decisions about independence
(affected by choice of test, power-size analysis,
and sample size)

— Local causal sufficiency (i.e., no confounders
among direct causes/effects and the target).
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HITON-PC as instance of GLL-PC

2. Inclusion heuristic function: Rank variables for priority for inclusion in the candidate
set by univariate association. Discard variables with zero univariate association.
Put in the candidate set the first variable.

3. Elimination strategy: If any variable inside the candidate set becomes independent
of the response variable given any subset of the candidate set, then remove that
variable from the candidate set and never consider it again.

4. Interleaving strategy: perform elimination every time the candidate PC set receives
a new member.

5.

This we call: interleaved HITON-PC with symmetry correction and is a correct
algorithm.
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MMPC as instance of GLL-PC

2. Inclusion heuristic function: Rank each variable for priority for inclusion in the
candidate set using the maximum of the minimum associations of the variable and
the target (minimizing over all conditioning subsets of current candidate members
of PC). Discard variables with zero max-min association with target. Put in the
candidate set the first variable.

3. Elimination strategy: If any variable inside the candidate set becomes independent
of the response variable given any subset of the candidate set, then remove that
variable from the candidate set and never consider it again.

4. Interleaving strategy: Perform elimination only once (when the tentative PC cannot
grow any more).

5.

This we call: MMPC with symmetry correction and is a correct algorithm.
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GLL-MB: Generalized Local Learning —Markov
Blanket

1. Start with empty set M of candidates for the true MB set.
2. Find the PC(T) using GLL-PC.

3. Find the PC(X) for every member of PC(T). Create the union
U=Union (PC(Xi)).

4. Eliminate non-spouses from U using the SGS criterion.

5. Eliminate non-predictive members of U using a wrapper
approach.

Steps #2,5 can be instantiated in infinite ways.

Admissibility requirements: use an admissible GLL-PC and a
sufficiently powerful wrapper.
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Respecting the admissibility rules of GLL-
MB

e Obtain correct minimal Markov Blanket
(variable set that renders all other variables
independent of T given the MB) under the
following sufficient conditions :

— Faithful distributions,

— Correct statistical decisions about independence

(affected by choice of test, power-size analysis,
and sample size).
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HITON-MB as instance of GLL-MB

Start with empty set M of candidates for the true MB set.

2. Find the PC(T) using HITON-PC with symmetry correction (or
without).

3. Find the PC(X) for every member of PC(T). Create the union
U=Union (PC(Xi)).
4. Eliminate non-spouses from U using the SGS criterion.

5. Eliminate non-predictive members of U using a backward

elimination wrapper and the desired classifier and loss
function.

This we call: interleaved HITON-MB with (or without) symmetry
correction and is a correct algorithm.
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LGL: Locally-constrained Global Learning

1. Find PC(X) for all variables X in data using an
admissible instantiation of GLL-PC.

2. Piece together the undirected skeleton.

3. Use any desired arc orientation scheme to orient
edges.

#1,3 can be instantiated in infinite ways. If an
admissible GLL-PC is used in #1, and admissible
orientation scheme in #3, then the total algorithm

is admissible.



Respecting the admissibility rules of LGL

e Obtain correct causal graph under the
following sufficient conditions :

— Faithful distributions,

— Correct statistical decisions about independence
(affected by choice of test, power-size analysis,
and sample size); alternatively correct statistical
decisions about graph structure scoring.

— Causal sufficiency (i.e., no confounders between
any pair of variables).
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MMHC: instance of LGL

1. Find PC(X) for all variables X in data using
MMPC.

2. Piece together the undirected skeleton.

3. Use greedy TABU search and BDeu to orient
edges.

MMHC is admissible with respect to the
skeleton but inadmissible with respect to
orientation.
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