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Key challenges in cancer
genotype-phenotype analysis

Complexity: Multiple driver mutations are typically
required for caner progression

» Driver mutations /alterations— mutations contributing to cancer
progression

 Passenger mutations — neutral mutations accumulating during
cancer progression

Heterogeneity: Phenotypically similar cancer cases
might be caused by different sets of driver mutations

Some driver mutations are rare

Epistasis — masking of the effect of one mutation by
another mutation

Cancer evolution



Network/Systems biology view

Motivation: Molecules function in the context of
Interaction networks :

— Effects of genetic alteration propagate through the
Interaction network affecting downstream genes

— Different driver mutations often dys-regulate common
pathways



Utilizing Networks for Understanding
Genotype-Phenotype effects

2. Network
based signal
propagation

3. Patient-
similarity
Networks

1. Dys- regulated
Networks
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Set cover approach as a method to find
cancer drivers/markers —
parsimony approach

Goal: Given a set of dysregulated genes and disease cases, find a representative
set of dysregulated genes

Genes

Gene “covers” the case
(it is altered in this case)

Disease Cases




Module Cover Approach

Optimization problem:

Find smallest cost set of modules so that each disease case is
covered at least k times

Cost is a function of:

distance in the network of genes
in same module
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Kim et al. PSB 2013



Module Cover: Glioblastoma Data

-regulat @

up-regulated

down-regulated @R @- regionalization; multicellular
immune organism growth

,_
HOXA7
= coverage response |  @=TRG namig

distance

UGT2B28

R
ATGERS 1 MYO18B FaBPG

1 _k Al focaanse vy

- H CNNM1
MAP3K10
glial cell i [ T

PIBNGL
differentiation < BANK1. pax7 1CAMS; cLSTN2GABARAPLS

[NABSA PLERHAS
RPE27A
SRS - S¥N3 o
m,: LMTKSAM EDARC1°'"“
v
VI, GD“L;WM“SPRRA
spip  SEMASA

FAMS78B

synapse
as

CDH9
r

N
sudBaRi2 1/ g
TPPP

e SRS L T Signature modules

1
[ P Sy ——

/srm;ul ! o w;’
DNM3 SH38L3E'

AN S el \ [k from GBM Dataset
| (REMBRANDT)

cell division

Kim et al. PSB 2013



The Pan-Cancer Initiative

BLCA (Bladder urothelial carcinoma) B BRCA (Breast invasive carcinoma) CRC (Colorectal carcinoma)

B GBM (Glioblastoma multiforme) HNSC (Head and neck squamous cell carcinoma) B KIRC (Kidney renal clear cell carcinoma)

LAML (Acute myeloid leukemia) LUAD (Lung adenocarcinoma) LUSC (Lung squamous cell carcinoma)

m OV (Ovarian serous cystadenocarcinoma) m UCEC (Uterine corpus endometrial carcinoma)

* genetic and epigenetic aberrations in cancer samples
from thousands of cancer patients over

* 12 cancer types

* Questions:
— Differences

— Similarities



The Pan-Cancer Initiative

BLCA (Bladder urothelial carcinoma) B BRCA (Breast invasive carcinoma) CRC (Colorectal carcinoma)
B GBM (Glioblastoma multiforme) HNSC (Head and neck squamous cell carcinoma) B KIRC (Kidney renal clear cell carcinoma)

LAML (Acute myeloid leukemia) LUAD (Lung adenocarcinoma) LUSC (Lung squamous cell carcinoma)

m OV (Ovarian serous cystadenocarcinoma) m UCEC (Uterine corpus endometrial carcinoma)

* genetic and epigenetic aberrations in cancer samples
from thousands of cancer patients over

* 12 cancer types

. Questions: Network based approaches

— Differences Network based stratification (Ideker)

— Similarities HotNet2 (Ben Raphael),
MEMCover (this presentation)



Module Cover Approach

Optimization problem:

Find smallest cost set of modules so that each disease case is
covered at least k times

Cost is a function of:

distance in the network of genes
in same module
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In many cancer types
cancer drivers are often mutually exclusive

Thomas et al 2007
patients

mutations in gene 1 I
I Mutations in gene 2

Possible explanations

« any of the two drivers alone gives sufficient growth advantage
* negative genetic interactions between drivers



Mutually exclusive pairs often act in the

same pathway

Example from Vandin et al.
(lung adenocarcinoma data)
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Thomas et al 2007
Ciriello, et al., 2012,
Vandin, et al., 2012,
Leiserson, et al., 2013

cell membrane
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Mutual Exclusivity and PanCancer TCGA

Can Mutual Exclusivity principle help identifying common pathways
dysregulated across cancer types?



Cancer type specific mutations are_mutually
exclusive but not In necessarily in the same
pathway
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Introducing classification of mutual exclusivity

« Within tissue exclusivity
WITHIN_ME

« Across tissues exclusivity
ACROSS ME

 Between tissues exclusivity
BETWEEN_ME
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Permutation Test (within cancer type)

To preserve the mutation rates of each gene and each sample, in each
iteration, two (gene, sample) pairs are randomly and swapped

Original Mutation Profile

TS Permutation Instance 1

TS Permutation Instance 2




Introducing classification of mutual exclusivity

A U . I

« Within tissue exclusivity
WITHIN_ME

Traditional permutation test FGFR | .H
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« Across tissues exclusivity
ACROSS ME

CDKN2A II | ‘ ARID1B

Type-restricted permutation test
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Permutation Test (across cancer type)

In each iteration, two (gene, sample) pairs are randomly chosen from the
same cancer type and swapped

Original Mutation Profile

TR Permutation Instance 1

TR Permutation Instance 2




Introducing classification of mutual exclusivity

« Within tissue exclusivity
WITHIN_ME

Traditional permutation test
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Introducing classification of mutual exclusivity

« Within tissue exclusivity
WITHIN_ME

Traditional permutation test
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Finding cross-cancer dysregulated
modules by combining interaction and
ACROSS ME

MEMCover — Mutual Exclusivity Module Cover



MEMCover Algorithm

Patient Samples in Different Cancer Types

Cost function considers:
ledge confidence weights,
l ACROSS_ ME scores,

constant cost per module ,
l weight of covering edge. (to utilize scores given by some mutation calling programs)
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Does putting together ACROSS ME and
Interaction data actually helps

MEMCover we find more cancer drivers

Compared to Module Cover Compared to HotNet2

MEMCover (Fredq.)

MEMCowver (Mutsig)

HotMet2 with HINT+ (Freq.)
HotMNet2 with HINT+ (Mut3ig)

» HotWNet? with iRefindex (Fredq.)
HotMet2 with iRefindex (MultSig)
HotMet? with MultiNet (Freq )
HotMet? with MultiNet (MutSig)
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Robust mutual exclusivity within some modules
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Hub-like ME within some modules

DNA damage response
(11.1%)




Across ME only within some modules
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LETTER

The spliceosome is a therapeutic vulnerability

doi:10.1038/naturel14985

in MYC-driven cancer

Tiffany Y.-T. Hsu?®4, Lukas M. Simon?*, Nicholas J. Neill>*, Richard Marcotte®, Azin SayadS, Christopher S. Bland'4,

Gloria V. Echeverria®”-® Tingting Sun'#, Sarah J. Kurley"*, Siddhartha Tyagi'**, Kristen L. Karlin**, Rocio Dominguez-Vidafia">4,
Jessica D. Hartman“T, Alexander Renwick*, Kathleen Scorsone’, Ronald J. Bernardi®, Samuel O. Skinner>'°, Antrix Jain®,
Mayra Orellanal4, Chandraiah Lagisetti'!, Ido Golding"'°, Sung Y. Jung', Joel R. Neilson*®, Xiang H.-F. Zhang'?,

Thomas A. Cooper6’7’8, Thomas R. Webb'!, Benjamin G. Neel>'?, Chad A. Shaw* & Thomas F. Westbrook!%*

« But little ME between MYC and Spliceoseme
* Possible ME between Myc and SNRNP 200, p-value < 0.03

 ME between PIK3CA and SF3B4, p-value O



No ME within some modules
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ME Is not restricted to genes from same
Mutual Exclusivity Hubs
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ME relation and interactions

Non-Interacting Pairs Interacting Pairs

HumanNet

ACROSS ME

WITHIN ME

BETWEEN ME




Summary

Combining ME with interaction network improves
identification of PanCancer dysregulated modules

While ME pairs are biased towards functionally interacting
pairs but there is a lot of ME between non-interacting
genes

Some dysregulated modules show no within module ME

but show ME with genes from other pathways
(inconsistent with Multi DENDRIX assumptions)

Mutual exclusivity hubs and are potent cancer drivers
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Information flow from genotypic changes to

Copy number aberrations

or/and mutations

expression changes

Gene expression

Kim et al. PolS CB 2011/RECOMB 2010



Selecting “signature” genes

Find smallest set of genes so that each case is “covered”
(=over/under expressed)” at least specified number of times

Kim et al. PolS CB 2011/RECOMB 2010



Explaining expression changes in the
signature genes

Cancer Cases Cancer Cases
CNV data Gene expression data



eQTL analysis links expression variability to
genotypic variability

- == | 1|

Tu et al Bioinfomatcis 2006
Suthram et al MSB 2008
Kim et al. PolS CB 2011/RECOMB 2010



Uncovering pathways of information flow between
CNV and target gene

Tu et al Bioinfomatcis 2006
Suthram et al MSB 2008
Kim et al. PolS CB 2011/RECOMB 2010



Adding resistances differentiate likelihoods of the
edges

Resistance - set to favor most likely path -based on gene expression values
(reversely proportional to the average correlation of the expression of the adjacent genes with
expression of the target gene)



Finding subnetworks with significant current flow

Resistance - set to favor most likely path -based on gene expression values
(reversely proportional to the average correlation of the expression of the adjacent genes with
expression of the target gene)



Quest for interpretation

GO enrichment analysis
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Quest for interpretation
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Kim et al. PolS CB 2011/RECOMB 2010



Repeat for other genes and significantly

Cancer Cases
CNV data

associated loci

Cancer Cases

Gene expression data




Are there common functional pathways?

Cancer Cases
CNV data

Cancer Cases
Gene expression data

target gene/module
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Kim et al. PolS CB 2011/RECOMB 2010



Gene Hubs

E2F1(88)

MYC(110) E2F4(43) CREBBP(34)  GRB2(27) SP3(26)

TFAP2A(25)  NFKB1(23) MYB(22) JUN(22) E2F2(22) RELA(21)
SP1(20) RPS27A(20) MAPK3(19)  POUSF1(17) HIF1A(16) PPARA(15)
UBA52(13)  CDK7(13) YBX1(13) YWHAZ(12)  CEBPB(12) POU2F1(12)

SMAD3(11)  TAL1(11)

Driving Copy number
aberrations

ABCAL AcP1 ADCYS AGA AHR
AKTL ANXA11 ANXA2 ApP. ARHGAP11A
BUB3 cap CAMK2G cpcz
CEBPA| CEP70 CFH| CHUK CcoBL
CSNK2A1 DARC DDX56 DIAPH3
EGFR| EIF2B1 EIF3A EIF3B/ EIF3F
ERBB4 ERCC6 FAS FER| FHL2
GSTK1| HEATR1 HSDL2 IFNAA ILK
LMO7 MAP2K4 Mcm7 MED10 MON2
NDUFA4| NDUFBS NRXN1 NUP205 NUPL1
PCDH7 POLR1A POLR2] POLR3A POLR3B
PRIM1 PRKAB1 PRKCA PSAP PSMA1
PSMB1 PSMC3 PSMC6 PTEN PTK2B
PTPRK RAI14 RE1 RBMX RBPMS
RHOBTB2 RPL10 RPL10L RPS17 SEC61A2
SFRS3 5GCB 5LC25A4) SLC27A2 SNRPB2|
SYNGR1 TAF2| TERF2IP THBS1 TOP1
U2AF2 UBE3A USF2 VAV3

ESR1(25)
AR(21)

CDC42(15)
UBE2I(11)

GO biological process

cell cycle arrest

epidermal growth factor receptor signaling pathway
negative regulation of cell growth

Ras protein signal transduction

regulation of sequestering of triglyceride

cell proliferation

nuclear mRNA splicing, via spliceosome
regulation of cholesterol storage
nucleotide-excision repair

RNA elongation from RNA polymerase II promoter
insulin receptor signaling pathway

transcription initiation from RNA polymerase II promoter
N-terminal peptidyl-lysine acetylation
phosphoinositide-mediated signaling

positive regulation of lipid storage

positive regulation of specific transcription from RNA
polymerase II promoter

positive regulation of epithelial cell proliferation
base-excision repair

negative regulation of hydrolase activity

gland development

positive regulation of MAP kinase activity
regulation of nitric-oxide synthase activity

estrogen receptor signaling pathway

regulation of receptor biosynthetic process

response to organic substance

JAK-STAT cascade

regulation of transforming growth factor-beta2
production

G1/S transition of mitotic cell cycle

SMAD protein nuclear translocation

Pathway Hubs
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Genotypes Phenotypes

2. Network
based signal
propagation

3. Patient-Patient

1. Dys- regulated similarity Networks
Networks -
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Document similarity network

(Documents are sets of words)

/

Chang J, Blei DM: Hierarchical Relational Models for Document Networks. Ann Appl
Stat 2010, 4(1):124-150.



Topic Model to divide documents into topics

Topic Il

police 0.51
Accident 0.29
search 0.17

Chang J, Blei DM: Hierarchical Relational Models for Document Networks. Ann Appl

Stat 2010, 4(1):124-150.



Phenotypic versus explanatory features

Phenotypic features (looks) : Explanatory features (words)
Survival time — mutations, CNV, micro RNA level:
ReSpOHSG to drugS ...... — Eplgenetlc factors’

Gene expression profile

— Sex, age, environment ....

Key idea

neighbors in patient network should have similar explanatory
features



Based on patient’s features represent each patient as
mixture of the subtypes

. — o .

Features:
EGFR_A
N[=RY,
CDKN2B_D

Cho et al. NAR 2013/RECOMB 2012



Generate edges based on similarity of subtype mixtures

Optimize parameters to maximize likelihood of
the patient -patient network

Cho et al. NAR 2013/RECOMB 2012



Visualization of subtypes distribution form a sample
model




Patient-patient relationship based
on1000 models

TCGA subtype

Observation: No separate Neural group

Cho et al. NAR 2013/RECOMB 2012



Selected cancer related features

1.0 Group 3

0.0 Group 2
Group 1

0.8

0.7

Belative frequency
(=]

L L L L

Observations: correctly recovered features form Varhaak et al. (TCGA)

AKT2 — most important defining feature of the Classical group

Potential benefits of using dys-regulated pathways as features



Genotypes Phenotypes

2. Network
based signal
propagation
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Using 1,000 models to infer:

* Probabillistic relation between patients
* Probabilistic relation between features

 Probabilistic elation between features and
patients



Varhaak et al.
Classification

Mesenchymal

» Classical

= Proneural

Neural

)

Case study of GBM
(Glioblastoma Multiforme)

patient network for GMB




Simultaneous modeling of
phenotypic and explanatory features

In each model we assume

— Kk subtypes

— each subtype is defined by probability distribution of
(explanatory) features

— each patient is a mixture of these subtypes

— patients with similar phenotypic features have mixtures

Chang J, Blei DM: Hierarchical Relational Models for Document Networks. Ann Appl
Stat 2010, 4(1):124-150.



Visualization of subtypes distribution form a sample
model

Cho et al. NAR 2013/RECOMB 2012



Mutual Exclusivity and PanCancer TCGA

Can Mutual Exclusivity principle help identifying common pathways
dysregulated across cancer types?
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BLCA N e I

BRCA
CRC
GBM
HNSC
KIRC
LAML

Mutual exclusivity is between cancer type specific drivers (expected)
Genes are not in the same pathway (a general property?)



Interaction networks are elucidated by a
variety of experimental techniques
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