

Understanding Genotype-Phenotype relations in Cancer via Network Approaches

> Teresa Przytycka NIH / NLM / NCBI

Phenotypes

Journal "Wisla" (1902)

Genotypes/causes

Phenotypes

Journal "Wisla" (1902) Picture from a local fare in Lublin, Poland

Key challenges in cancer genotype-phenotype analysis

- Complexity: Multiple driver mutations are typically required for caner progression
 - Driver mutations /alterations mutations contributing to cancer progression
 - Passenger mutations neutral mutations accumulating during cancer progression
- Heterogeneity: Phenotypically similar cancer cases might be caused by different sets of driver mutations
- Some driver mutations are rare
- Epistasis masking of the effect of one mutation by another mutation
- Cancer evolution

Network/Systems biology view

Motivation: Molecules function in the context of interaction networks :

- Effects of genetic alteration propagate through the interaction network affecting downstream genes
- Different driver mutations often dys-regulate common pathways

Utilizing Networks for Understanding Genotype-Phenotype effects

1. Dys- regulated Networks

3. Patient-Jo similarity fro Sland **Networks**

Genotypes

Phenotypes

<u>Set cover approach as a method to find</u> <u>cancer drivers/markers –</u> <u>parsimony approach</u>

Goal: Given a set of dysregulated genes and disease cases, find a representative set of dysregulated genes

Module Cover Approach

Optimization problem:

Find <u>smallest cost</u> set of modules so that each disease case is covered at least k times

Cost is a function of:

distance in the network of genes in same module

A similarity measure (application dependent)

number of modules (parameterized penalty)

Kim et al. PSB 2013

Module Cover: Glioblastoma Data

Signature modules from GBM Dataset (REMBRANDT)

Kim et al. PSB 2013

The Pan-Cancer initiative

BLCA (Bladder urothelial carcinoma)	BRCA (Breast invasive carcinoma)	CRC (Colorectal carcinoma)
GBM (Glioblastoma multiforme)	HNSC (Head and neck squamous cell carcinoma)	KIRC (Kidney renal clear cell carcinoma)
LAML (Acute myeloid leukemia)	LUAD (Lung adenocarcinoma)	LUSC (Lung squamous cell carcinoma)
OV (Ovarian serous cystadenocarcinoma)	UCEC (Uterine corpus endometrial carcinoma)	

- genetic and epigenetic aberrations in cancer samples from thousands of cancer patients over
- 12 cancer types
- Questions:
 - Differences
 - Similarities

The Pan-Cancer initiative

BLCA (Bladder urothelial carcinoma)	BRCA (Breast invasive carcinoma)	CRC (Colorectal carcinoma)
GBM (Glioblastoma multiforme)	HNSC (Head and neck squamous cell carcinoma)	KIRC (Kidney renal clear cell carcinoma)
LAML (Acute myeloid leukemia)	LUAD (Lung adenocarcinoma)	LUSC (Lung squamous cell carcinoma)
OV (Ovarian serous cystadenocarcinoma)	UCEC (Uterine corpus endometrial carcinoma)	

- genetic and epigenetic aberrations in cancer samples from thousands of cancer patients over
- 12 cancer types
- Questions:
 - Differences

Network based approaches

Network based stratification (Ideker)

- Similarities

HotNet2 (Ben Raphael), MEMCover (this presentation)

Module Cover Approach

Optimization problem:

Find <u>smallest cost</u> set of modules so that each disease case is covered at least k times

Cost is a function of:

distance in the network of genes in same module

A similarity measure (application dependent) ????

number of modules (parameterized penalty)

Kim et al. PSB 2013

In many cancer types

cancer drivers are often mutually exclusive

Possible explanations

- any of the two drivers alone gives sufficient growth advantage
- negative genetic interactions between drivers

Mutually exclusive pairs often act in the same pathway

Example from Vandin et al. (lung adenocarcinoma data)

Thomas et al 2007 Ciriello, et al., 2012; Vandin, et al., 2012; Leiserson, et al., 2013

Mutual Exclusivity and PanCancer TCGA

Can Mutual Exclusivity principle help identifying common pathways dysregulated across cancer types?

Cancer type specific mutations are mutually exclusive but not in necessarily in the same pathway

Introducing classification of mutual exclusivity

Within tissue exclusivity
 WITHIN_ME

Across tissues exclusivity
 ACROSS_ME

Between tissues exclusivity
 BETWEEN_ME

Introducing classification of mutual exclusivity

Within tissue exclusivity
 WITHIN_ME

Traditional permutation test

Across tissues exclusivity
 ACROSS_ME

Between tissues exclusivity
 BETWEEN_ME

Permutation Test (within cancer type)

To preserve the mutation rates of each gene and each sample, in each iteration, two (gene, sample) pairs are randomly and swapped

Introducing classification of mutual exclusivity

Within tissue exclusivity
 WITHIN_ME

Traditional permutation test

Across tissues exclusivity
 ACROSS_ME

Type-restricted permutation test

- Α. RB1 EGFR D. С. CDKN2A ARID1B **KRAS** RB1
- Between tissues exclusivity
 BETWEEN_ME

Permutation Test (across cancer type)

In each iteration, two (gene, sample) pairs are randomly chosen from the same cancer type and swapped

Introducing classification of mutual exclusivity

Within tissue exclusivity
 WITHIN_ME

Traditional permutation test

Across tissues exclusivity
 ACROSS_ME

Type-restricted permutation test

- Α. RB1 EGFR D. C. CDKN2A ARID1B **KRAS** RB1
- Between tissues exclusivity
 BETWEEN_ME

Type-oblivious permutation test

Introducing classification of mutual exclusivity

Finding cross-cancer dysregulated modules by combining interaction and ACROSS_ME

MEMCover – Mutual Exclusivity Module Cover

MEMCover Algorithm

Genes Connected by HumanNet

Patient Samples in Different Cancer Types

Cost function considers:

- edge confidence weights, ACROSS_ME scores,
 - constant cost per module ,
 - weight of covering edge.

(to utilize scores given by some mutation calling programs)

Does putting together ACROSS_ME and interaction data actually helps

MEMCover we find more cancer drivers

Compared to Module Cover

Compared to HotNet2

Robust mutual exclusivity within some modules

Hub-like ME within some modules

Across ME only within some modules

LETTER

The spliceosome is a therapeutic vulnerability in MYC-driven cancer

Tiffany Y.-T. Hsu^{1,2,3,4}, Lukas M. Simon⁴, Nicholas J. Neill^{1,4}, Richard Marcotte⁵, Azin Sayad⁵, Christopher S. Bland^{1,4}, Gloria V. Echeverria^{6,7,8}, Tingting Sun^{1,4}, Sarah J. Kurley^{1,4}, Siddhartha Tyagi^{1,4}, Kristen L. Karlin^{1,4}, Rocio Dominguez-Vidaña^{1,2,4}, Jessica D. Hartman⁴†, Alexander Renwick⁴, Kathleen Scorsone⁹, Ronald J. Bernardi⁹, Samuel O. Skinner^{1,10}, Antrix Jain¹, Mayra Orellana^{1,4}, Chandraiah Lagisetti¹¹, Ido Golding^{1,10}, Sung Y. Jung¹, Joel R. Neilson^{2,6}, Xiang H.-F. Zhang¹², Thomas A. Cooper^{6,7,8}, Thomas R. Webb¹¹, Benjamin G. Neel^{5,13}, Chad A. Shaw⁴ & Thomas F. Westbrook^{1,2,4}

- But little ME between MYC and Spliceoseme
- Possible ME between Myc and SNRNP 200, p-value < 0.03
- ME between PIK3CA and SF3B4, p-value 0

No ME within some modules

<u>Mutual Exclusivity Hubs</u>

ME relation and interactions

Summary

- Combining ME with interaction network improves identification of PanCancer dysregulated modules
- While ME pairs are biased towards functionally interacting pairs but there is a lot of ME between non-interacting genes
- Some dysregulated modules show no within module ME but show ME with genes from other pathways (inconsistent with Multi DENDRIX assumptions)
- Mutual exclusivity hubs and are potent cancer drivers

Genotypes

Phenotypes

1. Dys- regulated Networks 2. Network based signal propagation

3. Patientsimilarity Networks

Sland

Information flow from genotypic changes to expression changes

Kim et al. PolS CB 2011/RECOMB 2010

Selecting "signature" genes

Find smallest set of genes so that each case is "covered" (=over/under expressed)" at least specified number of times

Kim et al. PolS CB 2011/RECOMB 2010

Explaining expression changes in the signature genes

Cancer Cases CNV data Cancer Cases Gene expression data

eQTL analysis links expression variability to genotypic variability

Tu *et al* Bioinfomatcis 2006 Suthram *et al* MSB 2008 Kim et al. PolS CB 2011/RECOMB 2010

Uncovering pathways of information flow between CNV and target gene

Tu *et al* Bioinfomatcis 2006 Suthram *et al* MSB 2008 Kim et al. PolS CB 2011/RECOMB 2010

Adding resistances differentiate likelihoods of the edges

Resistance - set to favor most likely path -based on gene expression values (reversely proportional to the average correlation of the expression of the adjacent genes with expression of the target gene)

Finding subnetworks with significant current flow

Resistance - set to favor most likely path -based on gene expression values (reversely proportional to the average correlation of the expression of the adjacent genes with expression of the target gene)

Quest for interpretation

GO enrichment analysis

Quest for interpretation

The Lute Player, Hendrick Maertensz Sorgh (1610-1670), Rijksmuseum, Amsterdam (public domain)

Dutch Interior 1, Joan Miro' (1893–1983) Museum of Modern Art, New York © 2012 Successio Miro' Artists Rights Society (ARS), New York / ADAGP, Paris (used with ARS permission).

Kim et al. PolS CB 2011/RECOMB 2010

Repeat for other genes and significantly associated loci

Cancer Cases CNV data Cancer Cases Gene expression data

Are there common functional pathways?

Kim et al. PolS CB 2011/RECOMB 2010

Gene Hubs

MYC(110)	E2F1(88)	E2F4(43)	CREBBP(34)	GRB2(27)	SP3(26)	ESR1(25)
TFAP2A(25)	NFKB1(23)	MYB(22)	JUN(22)	E2F2(22)	RELA(21)	AR(21)
SP1(20)	RPS27A(20)	MAPK3(19)	POU5F1(17)	HIF1A(16)	PPARA(15)	CDC42(15)
UBA52(13)	CDK7(13)	YBX1(13)	YWHAZ(12)	CEBPB(12)	POU2F1(12)	UBE2I(11)
SMAD3(11)	TAL1(11)					

Pathway Hubs

Driving Copy number aberrations

ABCA1	ACP1	ADCY8	<mark>AGA</mark>	AHR	AKAP6	AKAP9
AKT1	ANXA11	ANXA2	APP	ARHGAP11A	ARHGAP29	ATR
BUB3	CAD	CAMK2G	CCNC	CDC2	CDC5L 🔶	CDKN2A
CEBPA	CEP70	CFH	СНИК	COBL	CRMP1	CSF2
CSNK2A1	CUL1	DARC	DDX56	DIAPH3	DLC1	EFNA5
EGFR	EIF2B1	EIF3A	EIF3B	EIF3F	ELMO1	EPB41
ERBB4	ERCC6	FAS	FER	FHL2 🔶	GBAS	GBE1
GSTK1	HEATR1	HSDL2	IFNA4	ILK	ITGB3BP	KITLG
LMO7	MAP2K4	MCM7	MED10	MON2	MRLC2	MS4A1
NDUFA4	NDUFB8	NRXN1	NUP205	NUPL1	ORC5L	PARP1
PCDH7	POLR1A	POLR2J	POLR3A	POLR3B	POM121	PPIA
PRIM1	PRKAB1	PRKCA	PSAP	PSMA1	PSMA4	PSMA5
PSMB1	PSMC3	PSMC6 🔒	PTEN	РТК2В	PTPRD	PTPRJ
PTPRK	RAI14 🛁	RB1	RBMX	RBPMS	REL	<mark>RGL1</mark>
RHOBTB2	RPL10	RPL10L	RPS17	SEC61A2	SF3B4	SFRS2
SFRS3	<mark>SGCB</mark>	SLC25A4	SLC27A2	SNRPB2	SPTA1	STXBP6
SYNGR1	TAF2	TERF2IP	THBS1	тор1 🔶	TP53	TRIP13
TSSC1	U2AF2	UBE3A	USF2	VAV3	VDAC2	
VWF	ZNF107					

GO biological process	#
cell cycle arrest	10
epidermal growth factor receptor signaling pathway	9
negative regulation of cell growth	9
Ras protein signal transduction	9
regulation of sequestering of triglyceride	8
cell proliferation	7
nuclear mRNA splicing, via spliceosome	7
regulation of cholesterol storage	7
nucleotide-excision repair	7
RNA elongation from RNA polymerase II promoter	7
insulin receptor signaling pathway	6
transcription initiation from RNA polymerase II promoter	6
N-terminal peptidyl-lysine acetylation	5
phosphoinositide-mediated signaling	5
positive regulation of lipid storage	4
positive regulation of specific transcription from RNA	2
polymerase II promoter	3
positive regulation of epithelial cell proliferation	3
base-excision repair	2
negative regulation of hydrolase activity	2
gland development	2
positive regulation of MAP kinase activity	2
regulation of nitric-oxide synthase activity	2
estrogen receptor signaling pathway	2
regulation of receptor biosynthetic process	2
response to organic substance	2
JAK-STAT cascade	2
regulation of transforming growth factor-beta2	2
production	2
G1/S transition of mitotic cell cycle	2
SMAD protein nuclear translocation	2

Genotypes

Phenotypes

1. Dys- regulated Networks 2. Network based signal propagation

3. Patient-Patient similarity Networks

Phenotype similarity network

Document similarity network

Chang J, Blei DM: Hierarchical Relational Models for Document Networks. Ann Appl Stat 2010, 4(1):124-150.

Topic Model to divide documents into topics

Chang J, Blei DM: Hierarchical Relational Models for Document Networks. Ann Appl Stat 2010, 4(1):124-150.

Phenotypic versus explanatory features

Phenotypic features (looks) :

Explanatory features (words)

Survival time Response to drugs,..... <u>Gene expression profile</u>

- <u>mutations</u>, CNV, micro RNA level;
- Epigenetic factors,
- Sex, age, environment

Key idea

neighbors in patient network should have similar explanatory features

Based on patient's features represent each patient as

mixture of the subtypes

Cho et al. NAR 2013/RECOMB 2012

Generate edges based on similarity of subtype mixtures

Optimize parameters to maximize likelihood of the patient -patient network

Cho et al. NAR 2013/RECOMB 2012

Visualization of subtypes distribution form a sample model

Patient-patient relationship based on1000 models

Observation: No separate Neural group

Cho et al. NAR 2013/RECOMB 2012

Selected cancer related features

Observations: correctly recovered features form Varhaak et al. (TCGA) AKT2 – most important defining feature of the Classical group Potential benefits of using dys-regulated pathways as features

Genotypes

Phenotypes

1. Dysregulated Networks 2. Network based signal propagation

3. Patient-patient similarity Networks

Sland

Acknowledgments

Przytycka's group

DongYeon Cho Phuong Dao Jan Hoinka YooAh Kim Yjije Wang Damian Wojtowicz

Support: Intramural research program NLM / NIH

Using 1,000 models to infer:

- Probabilistic relation between patients
- Probabilistic relation between features
- Probabilistic elation between features and patients

<u>Case study of GBM</u> (Glioblastoma Multiforme)

patient network for GMB

Varhaak et al. Classification

Classical

Proneural

Simultaneous modeling of phenotypic and explanatory features

In each model we assume

- k subtypes
- each subtype is defined by probability distribution of (explanatory) features
- each patient is a mixture of these subtypes
- patients with similar phenotypic features have mixtures

Chang J, Blei DM: Hierarchical Relational Models for Document Networks. Ann Appl Stat 2010, 4(1):124-150.

Visualization of subtypes distribution form a sample model

Cho et al. NAR 2013/RECOMB 2012

Mutual Exclusivity and PanCancer TCGA

Can Mutual Exclusivity principle help identifying common pathways dysregulated across cancer types?

Mutual exclusivity is between cancer type specific drivers (expected) Genes are not in the same pathway (a general property?)

Interaction networks are elucidated by a variety of experimental techniques

