General Purpose SAT-Solvers for
Causal Discovery

Frederick Eberhardt
Caltech

[joint work with Antti Hyttinen and Matti Jarvisalo]

CCD 1/21/2016

Causal Discovery

data
sample

w T Y 2

samples

Causal Discovery

assumptions, e.g.
e causal Markov
e causal faithfulness

e functional form
data * etc.

sample

w T Y 2

samples

inference algorithm

2

Causal Discovery

. equivalence classes
assumptions, e.g.

e causal Markov
e causal faithfulness @ @
e functional form

data * etc.

sample =

p model specifications
»

w T Y z w Ty 2 w Ty z
w(0|0]?fa|l w(0]|O]?]?

;2_ ® S r(0]0]0({0] <*[0]0|0f?
: L g e yiololofo] ¥[2][o]o]o
? , Zlb]?21?210 Z121210(0
N direct edges confounders

inference algorithm

2

General Model Space

assumption
/ algorithm

Markov

faithfulness

causal
sufficiency

acyclicity

parametric
assumption

General Model Space

non-linear
PC/GES FClI CCD JLINGaM| additive

noise

assumption
/ algorithm

Markov v

faithfulness minimality

causal
sufficiency

acyclicity

linear | non-linear
non- additive
Gaussian noise

parametric
assumption

General Model Space

non-linear
PC/GES FClI CCD JLINGaM| additive
noise

assumption
/ algorithm

Markov v

faithfulness minimality

causal
sufficiency

acyclicit

linear | non-linear
non- additive
Gaussian noise

parametric
assumption

General Model Space

non-linear

assumPtion PC/GES FClI ccD ILINGaM!l additive
[algorithm

noise

Markov v
faithfulness minimality

causal
sufficiency

acyclicit

linear | non-linear
non- additive
Gaussian noise

parametric
assumption

w/ latents

w/ cycles

w/ both

Combining Experiment and Observation

experiment

observational study

Combining Experiment and Observation

experiment
w Ty z

) &

=

=0 g

observational study w Ty

D

- -

3

Combining Experiment and Observation

experiment
w r Yy <
@® @ 8
true = _E'
(unknown) :
model N e
N
@ @ observational study w Ty
a @ //,‘ 8
nmp E—

Causal Discovery

data
sample assumptions, e.g.
e causal Markov causal structures

w T Y 2 e causal faithfulness consistent with data
- e functional form
p= * ctcC.
S O
c o
rallt =
g 3
X
O

w xr Yy

samples

observational

inference algorithm

Causal Discovery

assumptions, e.g. causal structures

* causal Markov consistent with data
e causal faithfulness

e functional form
* etc.

unrrp ® @
5 Omo
€
%
inference algorithm ete.

Causal Discovery

background knowledge

assumptions, e.g. causal structures

* causal Markov consistent with data
e causal faithfulness

e functional form
* etc.

w T Y z

samples

samples

inference algorithm

Causal Discovery

background knowledge

e edge presences/ .
absences assumptions, e.g. causal structures

* causal Markov consistent with data
e causal faithfulness

e functional form
* etc.

unrrp ® @
5 Omo
€
%
inference algorithm ete.

Causal Discovery

background knowledge

@ e edge presences/ ,
absences assumptions, e.g. causal structures
o e pathways * causal Markov consistent with data

e causal faithfulness

@ e functional form

® etc.

unrrp ® @
5 Omo
€
%
inference algorithm ete.

Causal Discovery

background knowledge

@ v S e edge presences/ ,
Y W T bsences assumptions, e.g. causal structures
o e pathways * causal Markov consistent with data
e tier orderings * causal faithfulness
@ * functional form
* etc.

unrrp ® @
5 Omo
€
%
inference algorithm ete.

Causal Discovery

background knowledge

® [,
, S e edge presences/

Y|~ w Jbsences assumptions, e.g. causal structures
o e pathways * causal Markov consistent with data
; e tier orderings e causal faithfulness

@ e “priors” * functional form
* etc. i !

unrrp ® @
5 Omo
€
%
inference algorithm ete.

Settings: examples

subsampled time series

time

>

XK KX

S

(cf. work by Plis & Danks)

Settings: examples

subsampled time series

time

O——0——0
S S |

(cf. work by Plis & Danks)

Settings: examples

subsampled time series

time

>

(cf. work by Plis & Danks)

L A 4 2 :
inference algorithm

7

Settings: examples

subsampled time series biological settings
time
) \?/W
O \b/\b \O

(cf. work by Murray-
Watters & Glymour)

we "
> >O A . |
4 \ FS
f f ' . l{i;“'v. 4' : > .
- LN
2 N W,
4‘ - ‘
g L 4 ' »
L] P

(cf. work by Plis & Danks)

e W
inference algorithm

Causal Effects

inference algorithm

Causal Effects

inference algorithm equivalence class

Causal Effects

270 @ @
Sy >] = Plyldo(w))
3 Oan®

inference algorithm equivalence class causal effect

Causal Effects

O
ST = Plyldo(w))

inference algorithm equivalence class causal effect

How to apply the do-calculus in settings
when the causal structure is
underdetermined?

High-Level

High-Level

data
sample

w T Y z

samples

w Ty

samples

High-Level

assumptions, e.g.
data e causal Markov
sample e causal faithfulness
* etc.
wry z
(7]
9
o
-
(]
(7]
w Ty

samples

, background
H 'gh'Level knowledge, e.g.
. e pathways
assumptions, e.g. e tier ordering
data e causal Markov * “priors”
sample e causal faithfulness * etc.
* etc.
w T Y z
0
a
£
&
w Ty

samples

, background
H 'gh'Level knowledge, e.g.
. e pathways)
assumpt|ons, e.g. ® tier Ordering Sett|ng
data e causal Markov e “priors” e subsampled time
sample e causal faithfulness . otc. series
* etc. e tier structure
w Ty z
(7g)
)
o
&
3
w Ty

samples

background

knowledge, e.g.
e pathways

* tier ordering

* “priors”

* etc.

High-Level
assumptions, e.g.
data e causal Markov
sample e causal faithfulness
® ctcC.
w T Yy z
O
(aN
-
3
(in)dependence
constraints
w Ty
zAy|Cl|J

samples

setting

e subsampled time
series

e tier structure

, background
H 'gh'Level knowledge, e.g.
. e pathways)
assumptlons, e.g. ° tier Ordering settlng
data e causal Markov e “priors” e subsampled time
sample e causal faithfulness . otc. series
* etc. e tier structure

iy \)\

3
” (in)dependence
constraints Encode these as
w x Y logical constraints on
x Cl|J .
AyICl the underlying graph

structure

samples

. background
H 'gh'Level knowledge, e.g.
e pathways)
assumptions, e.g. e tier ordering setting
data e causal Markov e “priors” e subsampled time
sample e causal faithfulness . otc. series
* etc. e tier structure

vy \)\

0
c —
5 3
(in)dependence Q
constraints Encode these as 2
w Ty logical constraints on %
z Ly|C||J J . >
) the underlying graph ,
5 structure 3
= O
S <
7)
@

d-separation and independence

® Under the assumption of causal Markov and causal Faithfulness:

v Ly|Cl|I <= = Ly|C||J

d-separation and independence

® Under the assumption of causal Markov and causal Faithfulness:

v Ly|Cl|I <= = Ly|C||J

x and y are d-connected x and y are dependent
given C when variables - given C when variables
in] are subject to in] are subject to

intervention intervention

Example with 3 variables: x, y, z

r 1y

Example with 3 variables: x, y, z

r 1y
PC-algorithm

s

Example with 3 variables: x, y, z

r 1y
PC-algorithm

i

e

Example with 3 variables: x, y, z

r 1 vy
PC-algorithm SAT-algorithm

t A:="c —yeG”
B:=%Yy —22xeG”
{ C:=“25z2e@”

D=2 —=yeG”
‘ \

/@

define atoms

Example with 3 variables: x, y, z

r 1 vy
PC-algorithm SAT-algorithm

t A:="c —yeG”
B:=%Yy —22xeG”
{ C:=%252e@

D=2 —=yeG”
‘ \

encode (A N-B // direct edges
constraint : A —|(C A D)// common causes

\ AN // indirect paths

define atoms

SATl-based Causal Discovery

® Formulate the independence rly < "AAN-DB...
constraints in propositional

logic A ="‘x — y is present’

SATl-based Causal Discovery

® Formulate the independence rly < "AAN-DB...
constraints in propositional o . :
logic A = ‘x — y is present

® Encode the constraints into A AN =B A —l(C A D) A —
one formula.

SATl-based Causal Discovery

® Formulate the independence rly < "AAN-DB...
constraints in propositional

logic A = ‘x — vy is present’

® Encode the constraints into A AN =B A —l(C A D) A —
one formula.

® Find satisfying assignments A = false
using a SAT-solver B = false <—

SATl-based Causal Discovery

® Formulate the independence rly < "AAN-DB...
constraints in propositional

logic A = ‘x — vy is present’

® Encode the constraints into A AN =B A —l(C A D) A —
one formula.

® Find satisfying assignments A = false
using a SAT-solver B = false <—

B very general setting (allows for cycles and latents) and trivially
complete

SATl-based Causal Discovery

® Formulate the independence rly < "AAN-DB...
constraints in propositional

logic A = ‘x — vy is present’

® Encode the constraints into A AN =B A —l(C A D) A —
one formula.

® Find satisfying assignments A = false
using a SAT-solver B = false <—

B very general setting (allows for cycles and latents) and trivially
complete
B BUT: erroneous test results induce conflicting constraints:

UNsatisfiable

Conflicts and Errors

® Statistical independence tests produce errors

constraint

x Mz
yALz
x A1y

r 1 ylz

Conflicts and Errors

® Statistical independence tests produce errors

B Conflict: no graph can produce the set of constraints

constraint

x Mz
yALz
x A1y

r 1 ylz

Conflicts and Errors

® Statistical independence tests produce errors

B Conflict: no graph can produce the set of constraints

constraint

x Mz

@®) yALz
@1{ <:w£y r 1Ly

r 1 ylz

Conflicts and Errors

® Statistical independence tests produce errors

B Conflict: no graph can produce the set of constraints

constraint

x Mz

@®) yALz
xly\2>

r 1 ylz

Conflicts and Errors

® Statistical independence tests produce errors

B Conflict: no graph can produce the set of constraints

constraint weight

x Mz 3000

@®) y Mtz 2500 @
@1{ <az7}£y r Ly 500 @%{
r AL y|z 250 ﬂfiy\2>

Constraint Satisfaction Approach

® INPUT: (in)dependence constraints weighted according to
reliability

HllIlE ’LU

. constraint k is not satisfied by G

e OUTPUT: a graph G that minimizes the cost

Constraint Satisfaction Approach

® INPUT: (in)dependence constraints weighted according to
reliability

HllIlE ’LU

. constraint k is not satisfied by G

e OUTPUT: a graph G that minimizes the cost

What are suitable weights?

Weighting Schemes

® Constant weights
= unit weights for all constraint

Weighting Schemes

® Constant weights
= unit weights for all constraint

® Hard dependencies
= only treat rejections of the null-hypothesis as hard constraints, in line with
classical statistics
- give dependences infinite weight, maximize the independences (unit weight)
in light of these dependences

Weighting Schemes

® Constant weights
= unit weights for all constraint

® Hard dependencies
= only treat rejections of the null-hypothesis as hard constraints, in line with
classical statistics
- give dependences infinite weight, maximize the independences (unit weight)
in light of these dependences

® |Log weights
- obtain the probability of an (in)dependence and weigh it according to the
log of the probability
= Model selection with Bayes rule:

z Ly|C z Ly|C

P(x|C)P(y)z,C) e P(x|C)P(3|C)

Weighting Schemes

® Constant weights
= unit weights for all constraint

® Hard dependencies
= only treat rejections of the null-hypothesis as hard constraints, in line with
classical statistics
- give dependences infinite weight, maximize the independences (unit weight)
in light of these dependences

® |Log weights
- obtain the probability of an (in)dependence and weigh it according to the
log of the probability
= Model selection with Bayes rule:

z Ly|C z Ly|C

P(x|C)P(y)z,C) e P(x|C)P(3|C)

= probabilistic classifier: find G such that if it were true, test results would be
optimal in the sense of a proper score

I5

Optimization

® Answer Set Programming (ASP) is a modern declarative
programming paradigm

= solver used: Clingo
= SAT-solver and branch and bound algorithm
= finds globally optimal weighted maxSAT solution

Simulation |: cycles and latents

0.90
I

0.85
I

TPR

0.80
I

0.75
I

000 005 010 015 020 025 0.30
FPR

® ROC of dependences, passive observational data set, 6 observed
variables, average degree 2; 500 samples, 200 models, linear
Gaussian parameterization

Simulation 2: no cycles, no latents

o .
og weights
O
(o) upn
S
TS —
- o
L0
o0
S

000 005 010 015 020 025 0.30
FPR

Simulation 3: no cycles, but latents

0.90
I

0.85
I

TPR

0.80
I

0.75
I

O
I I I I I I I

000 005 010 015 020 025 0.30
FPR

Simulation 4: Scalability

09

o
(s) @ougysul Jad sawn BUIA|OS

0¢

0 20 40 60 80 100
instances (sorted for each line)

® up to / variables and only a few data sets for now
(9x107 18 graphs)

20

Background Knowledge

o*
«*
.
*

\J
........

“priors”

21

Background Knowledge

.
u
.
R
.
.
«*
o
*
0
D
D)

\J
........

“priors”

21

Background Knowledge

S0 = zlullz

\J
........

“priors”

21

Background Knowledge

.... F® < > r X wllxz weight =0.8

.

“priors”

21

Background Knowledge

@

- © < > LEfH/_waZ weight = 0.8
p

v [z — (x> 2) A\ (x> w)

vl Ay >z Ay > w)

“priors”

21

Background Knowledge

@

- © < > LEfH/_waZ weight = 0.8
p

v [z — (x> 2) A\ (x> w)

vl Ay >z Ay > w)

“priors” <——>

21

Background Knowledge

.... P ® < > r X wllxz weight =0.8

.

(x > 2) A (x> w)
Ay >zA(y>w)

L =

* specific probabilities for each

. ., graph
priors < > * soft sparsity constraint

21

Settings

time

>

XK K KX

S S |
S
O——0——0
S S |

Settings

time

=» O O

urange(1l..5).

1 { u(U): urange(U) } 1.

{ edgel(X,Y) } :- node(X), node(Y).
path(X,Y,1l) :- edgel(X,Y).
path(X,Y,L) :- path(X,Z,L-1), edgel(Z,Y),

L <= U, u(U0).

edgelu(X,Y) :- path(X,Y,L), u(L).

conflu(X,Y) :- path(Zz,X,L), path(Z,Y,L),
node (X),node(Y), node(Z),
X <Y, L <U, u(u).

:— edgeu(X,Y), not edgelu(X,Y).
:— no _edgeu(X,Y), edgelu(X,Y).
:— confu(X,Y), not conflu(X,Y).
:-= no _confu(X,Y), conflu(X,Y).

22

Sett'“gs L\r/ange for rate of subsampling

. subsampling rate is unique
time urange(l..5). L\/ P1ing g

def. of edge in graph
:x<§§><:§:><E§><i§;><E§>K: 1 { u(U): urange(U) } 1.L\/ 5 i
{ edgel(X,Y) } :- node(X), node(Y).
f f f path(X,Y,1l) :- edgel(X,Y).

path(X,Y,L) :- path(X,Z,L-1), edgel(Z,Y),

L <= U, u(U0).
| \[recursive def. of path
time

> edgelu(X,Y) :- path(X,Y,L), u(L).
A\

def. of edge in subsampled graph

conflu(X,Y) :- path(Zz,X,L), path(Z,Y,L),
node (X),node(Y), node(Z),

f f X <Y, L <U, u(U).

:— edgeu(X,Y), not edgelu(X,Y).
:— no _edgeu(X,Y), edgelu(X,Y).
:— confu(X,Y), not conflu(X,Y)

def. of how confounders :— no_confu(X,Y), conflu(X,Y). /\

= O O
O
O

arise due to subsampling

constraints on how edges in subsampled
graph relate to edges in true graph

22

Runtime comparison

10*

)

RN

o
w

RN
o
N

For a graph determined
at subsampling rate 2,
infer the equivalence
class of graphs at the
system time scale

(1-step)

RN
o
o

1 MSL
1 SAT

computation time (seconds
8—\

—
<

40

&
2
7 76
ot
L5
ey
&)
34

15 20 25 30 35 40 45 50 55 60 65 70
number of nodes in a graph

LN
<
N

23

Output of Causal Search Algorithms

e
<2
=
O
P
-
<
7p
%
©
£

24

Output of Causal Search Algorithms

equivalence
class?

e
<2
=
O
P
-
<
7p
%
©
£

24

Output of Causal Search Algorithms

Query:

e
<2
=
O
P
-
<
7p
%
©
£

24

Output of Causal Search Algorithms

Query:
* list the structures in the
equivalence class

e
<2
=
O
P
-
<
7p
%
©
£

24

Output of Causal Search Algorithms

Query:

e list the structures in the
equivalence class

* what structural features are

" determined!?
» - edges, confounders

- ancestral relations
- pathways

e
<2
=
O
P
-
<
7p
%
©
£

24

Output of Causal Search Algorithms

Query:

e list the structures in the
equivalence class

* what structural features are

" determined!?
(‘ - edges, confounders

- ancestral relations
- pathways

* what are the highest scoring
equivalence classes!?

e
<2
=
O
P
-
<
7p
%
©
£

24

Output of Causal Search Algorithms

e
<2
=
O
P
-
<
7p
%
©
£

Query:

* list the structures in the
equivalence class

* what structural features are
determined!?
- edges, confounders
- ancestral relations
- pathways

* what are the highest scoring
equivalence classes!?

Response:
* enumeration of solutions
e “backbone” of the SAT-instance

24

Computing Causal Effects

equivalence

class? *P(y|d0(a:')) I

b
<
=
O
P
-
<
AN
>
©
£

25

equivalence *P(y|d0(x)) ?

class?

26

equivalence *P(y|d0(a’;)) ?

class?

® enumerate each graph in the equivalence class and run the
Tian-Shpitser algorithm to determine the causal effect?

26

equivalence *P(y|d0(a’;)) ?

class?

® enumerate each graph in the equivalence class and run the
Tian-Shpitser algorithm to determine the causal effect?

® Alternative:

26

equivalence *P(y|d0(a’;)) ?

class?

® enumerate each graph in the equivalence class and run the
Tian-Shpitser algorithm to determine the causal effect?

® Alternative:

do-calculus

Rule | (insertion/deletion of observations)

P(y|do(x), z,w) = P(y|do(x),w) if Y 1L Z| X, W||X
Rule 2 (action/observation exchange)

P(yldo(z),do(z),w) = P(y|ldo(x), z,w) if Y 1L I7|X,Z, W||X
Rule 3 (insertion/deletion of actions)

P(yldo(x),do(z),w) = P(y|do(z),w) if Y 1L I7| X, W||X

26

equivalence *P(y|d0(a’;)) ?

class?

® enumerate each graph in the equivalence class and run the
Tian-Shpitser algorithm to determine the causal effect?

® Alternative:

do-calculus
Rule | (insertion/deletion of observations)
Plyldo(s).) = Plyldola), Y L 71X, W]
Rule 2 (action/observation exchange)
P(yldo(z),do(z),w) = P(y|do(x), z, w
Rule 3 (insertion/deletion of actions)
Plyldo(z). do(2).) — Plyldo(a), wLY L 121X, WX

26

equivalence *P(y|d0(a’;)) ?

class!?
® enumerate each graph in the equivalence class and run the
Tian-Shpitser algorithm to determine the causal effect?

® Alternative:

do-calculus
Rule | (insertion/deletion of observations)

P(yldo(z), z,w) = P(y!dO(fL‘),w
Rule 2 (action/observation exchange)

P(y|do(x),do(z), w) = P(y|do(z), 2, w
Rule 3 (insertion/deletion of actions)

P(y|do(x), do(z), w) = P(y|do(z), w
= search in the equivalence class over the possible applications

of the do-calculus rules by querying the satisfaction of their
conditions

26

Algorithm for the do-calculus when the graph is unknown

® determine the equivalence class implicitly using a SAl-solver
® query one solution graph G

® run the Tian-Shpitser-algorithm on G to determine whether
the causal effect P(y|do(w)) is determined for G

® if it is, determine which do-calculus rules were applied and
record the constraints (1, ..., C,, that were used

® add —C'; V...V (), as a constraint to refine the current
equivalence class

® if not, determine the “hedge” H and add —H to refine the
current equivalence class

® repeat until the equivalence is exhausted

® return the set of estimates of the causal effect and NA if it
cannot be determined in one member of the equivalence class

27

Comparison of our approach to enumeration

e0)
Other ops.
Algorithm 2
® SAT-solver ops.
® Shpitser's
o — ® FCI

ave. secs per run over 20 runs
4
|

2
I

)

Algo. 1 Enum. Algo. 1 Enum.
n=5, 4 edges n=>5, 4 edges n=5, 5 edges n=>5, 5 edges

28

In sum: do-calculus using a SAT-solver

® enables computation of the causal effect when the graph
structure is underdetermined

29

In sum: do-calculus using a SAT-solver

® enables computation of the causal effect when the graph
structure is underdetermined

B how should one estimate a causal effect when the
equivalence class of causal structures was determined on the
basis of a set of conflicted constraints!?

29

In sum: do-calculus using a SAT-solver

® enables computation of the causal effect when the graph
structure is underdetermined

B how should one estimate a causal effect when the
equivalence class of causal structures was determined on the
basis of a set of conflicted constraints!?

® some avenues one can explore with the query-based
approach:

- explore more closely the conditions involved in
determining the causal effect

= find multiple different estimators

- even though the overall graph structure may not be
determinable without resolving conflicts, some causal
effects may be

29

Conclusion

® the use of general purpose SAl-solvers provides an
extraordinarily versatile tool for causal discovery

® it opens new avenues for handling background knowledge and
the computation of causal effects when the causal structure is
underdetermined

® it provides a query based approach in contrast to a
representation of an equivalence class of causal structures

® it suggests that current general purpose constraint solvers
outperform domain specific approaches

30

References

Hyttinen, Eberhardt & Jarvisalo (2015). Do-calculus when the true graph is unknown. UAI 2015.
Hyttinen, Eberhardt & Jarvisalo (2014). Constraint-based Causal Discovery: Conflict Resolution with
Answer Set Programming. UAI 2014.

Hyttinen, Hoyer, Eberhardt & Jarvisalo (2013). Discovering Cyclic Causal Models with Latent Variables:
A General SAT-Based Procedure. UAI 201 3.

{Hyttinen, Plis, Danks, Eberhardt & Jarvisalo} (work in progress). Causal Discovery from Subsampled
Time Series Data by Constraint Optimization.

Other relevant work that is closely related:

Triantafillou & Tsamardinos (2015). Constraint-based Causal Discovery from Multiple Interventions
Over Overlapping Variable Sets. JMLR 16(Nov):2147-2205.

Claassen & Heskes (201 1). A logical characterization of constraint-based causal discovery. UAI 201 1.
Triantafillou, Tsamardinos & Tollis (2010). Learning Causal Structure from Overlapping Variable Sets.
AISTATS 2010.

Thank you!

31

