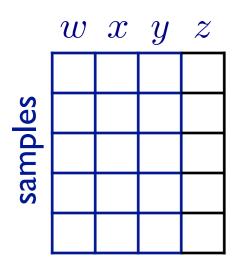
General Purpose SAT-Solvers for Causal Discovery

Frederick Eberhardt
Caltech

[joint work with Antti Hyttinen and Matti Jarvisalo]

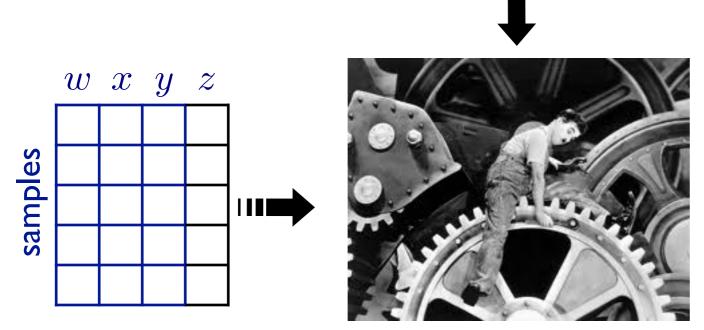
data sample



assumptions, e.g.

- causal Markov
- causal faithfulness
- functional form
- etc.

data sample



inference algorithm

data sample

w x y z

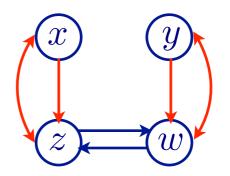
assumptions, e.g.

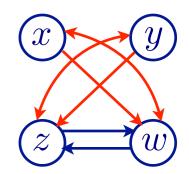
- causal Markov
- causal faithfulness
- functional form
- etc.

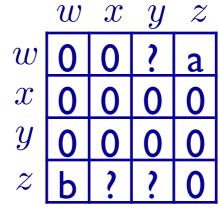
inference algorithm

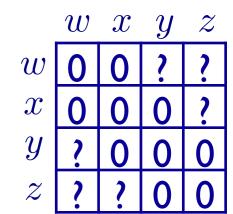
equivalence classes

model specifications









confounders

assumption / algorithm

Markov

faithfulness

causal sufficiency

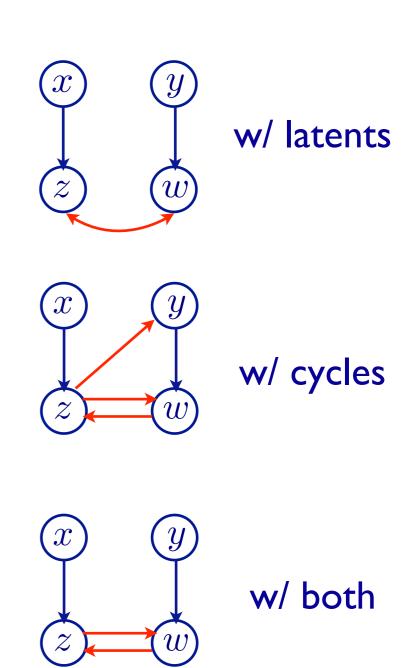
acyclicity

parametric assumption

assumption / algorithm	PC / GES	FCI	CCD	LiNGaM	non-linear additive noise
Markov	✓	✓	√	✓	✓
faithfulness	✓	✓	✓	Х	minimality
causal sufficiency	✓	X	✓	✓	✓
acyclicity	✓	✓	X	✓	√
parametric assumption	X	X	X	linear non- Gaussian	non-linear additive noise

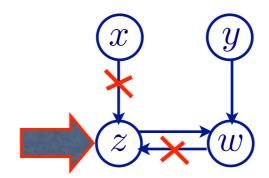
assumption / algorithm	PC / GES	FCI	CCD	LiNGaM	non-linear additive noise
Markov	✓	✓	√	✓	✓
faithfulness	✓	✓	✓	X	minimality
causal sufficiency	✓	X	✓	✓	✓
acyclicity	✓	✓	X	✓	✓
parametric assumption	X	X	X	linear non- Gaussian	non-linear additive noise

assumption / algorithm	PC / GES	FCI	CCD	LiNGaM	non-linear additive noise
Markov	✓	✓	√	✓	✓
faithfulness	✓	✓	✓	X	minimality
causal sufficiency	✓	X	✓	✓	√
acyclicity	✓	✓	X	✓	✓
parametric assumption	X	X	X	linear non- Gaussian	non-linear additive noise

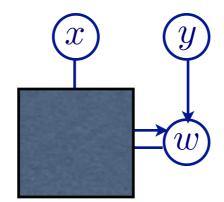


Combining Experiment and Observation

experiment

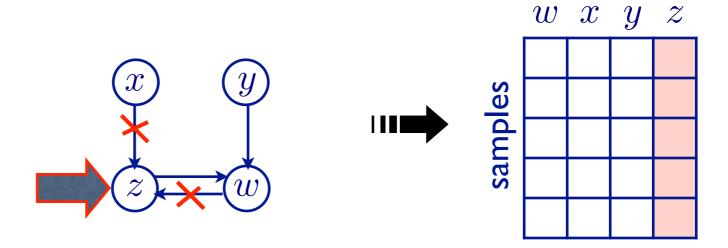


observational study

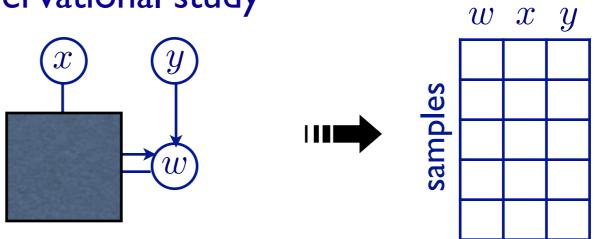


Combining Experiment and Observation

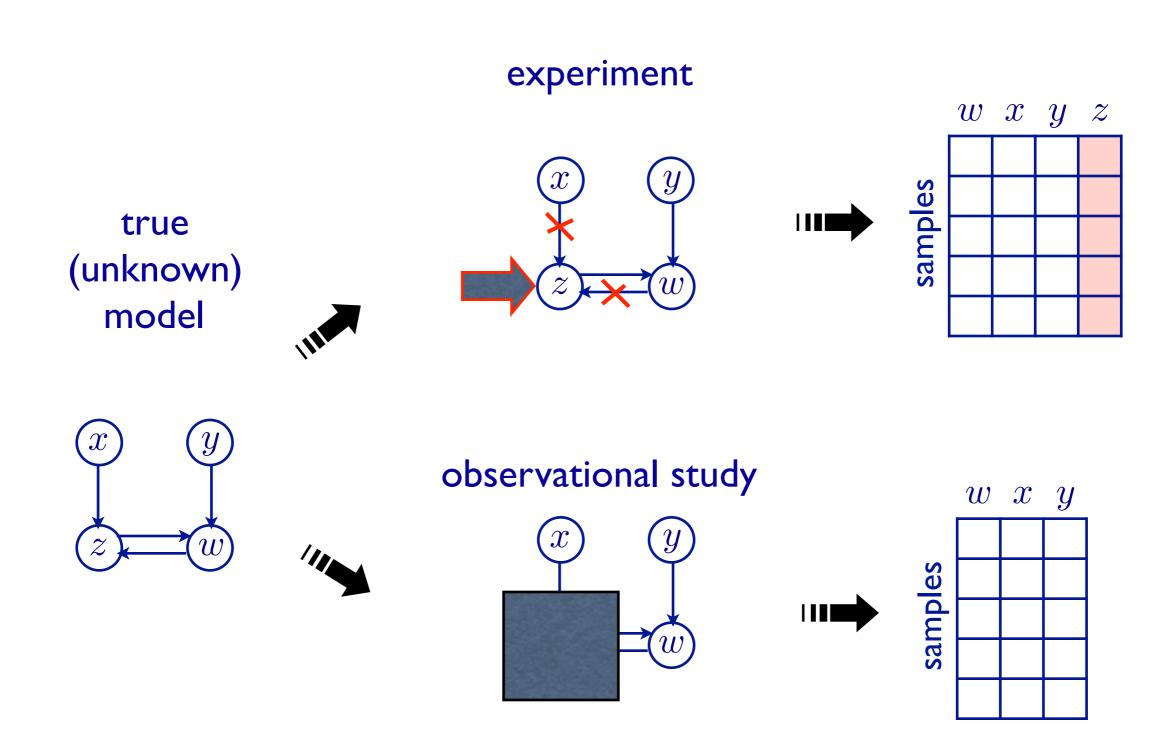
experiment

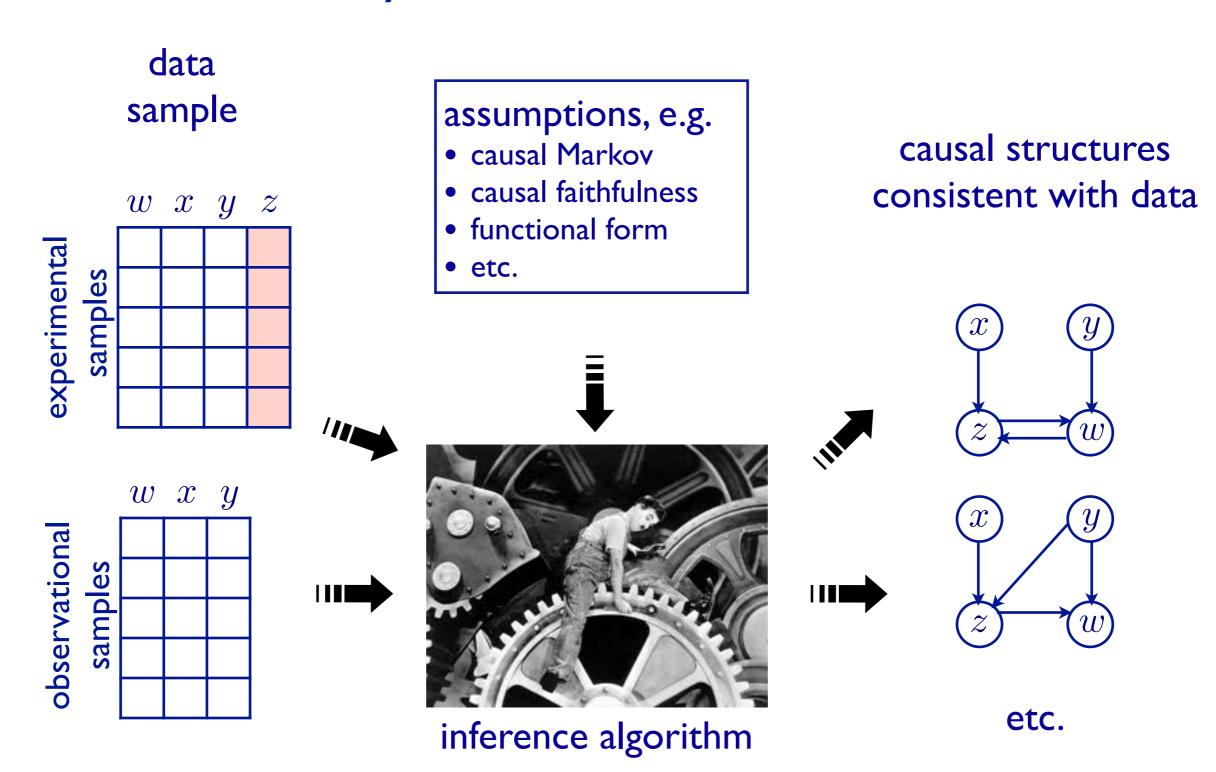


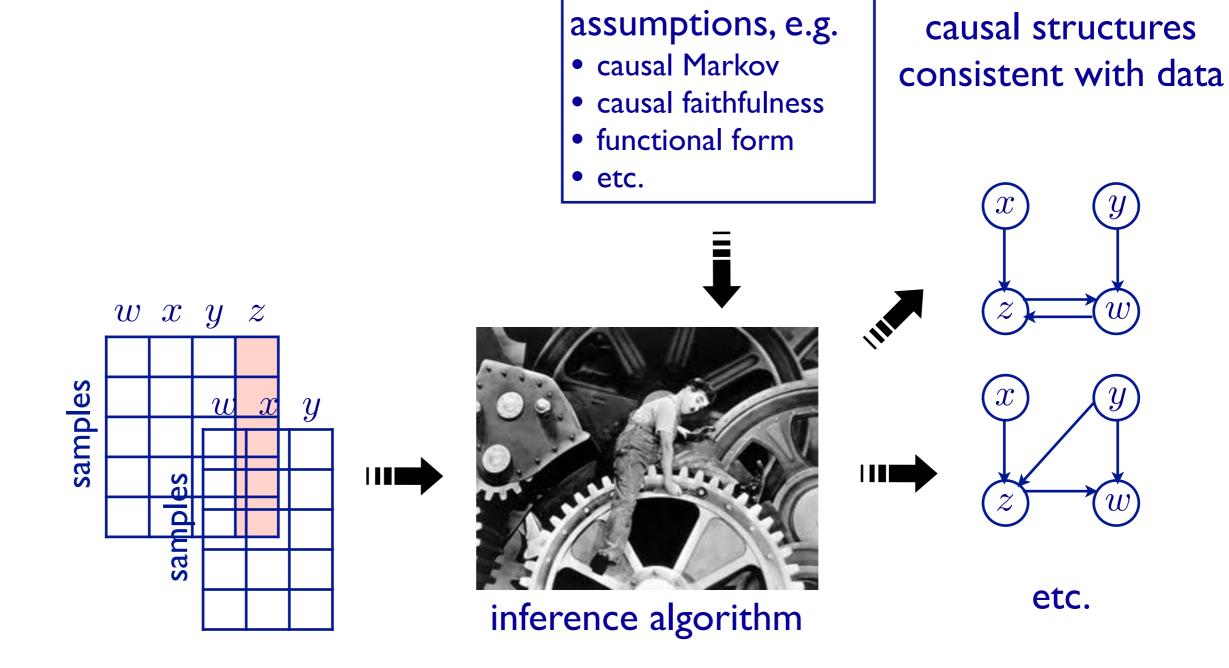
observational study



Combining Experiment and Observation





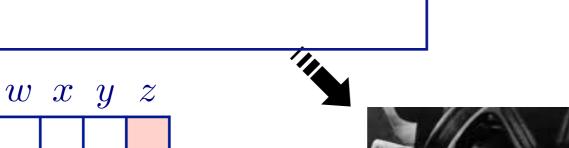


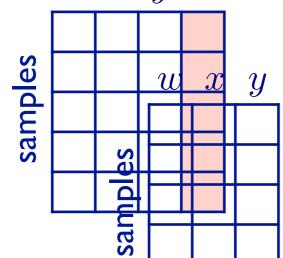
background knowledge

assumptions, e.g.

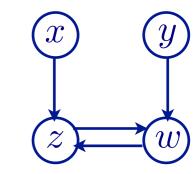
- causal Markov
- causal faithfulness
- functional form
- etc.

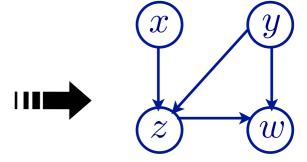
causal structures consistent with data





inference algorithm





etc.

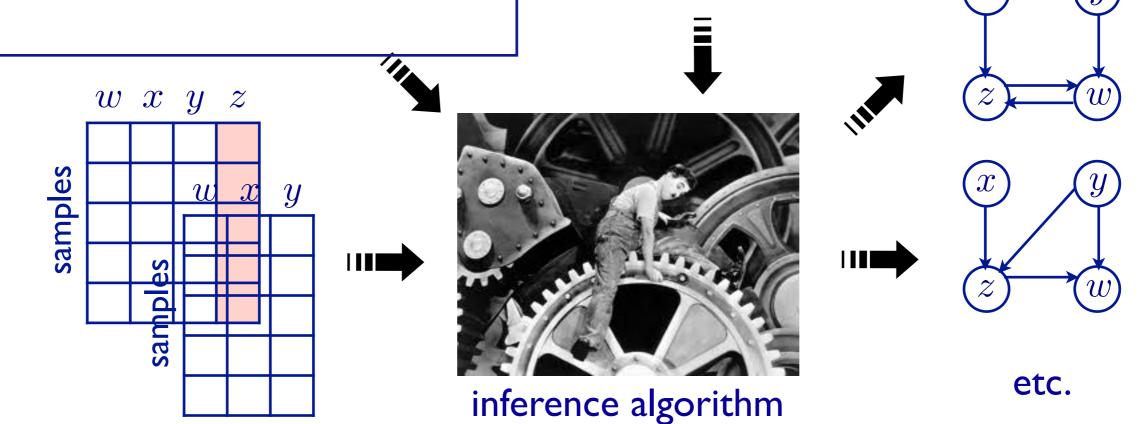
background knowledge

 edge presences/ absences

assumptions, e.g.

- causal Markov
- causal faithfulness
- functional form
- etc.

causal structures consistent with data



background knowledge

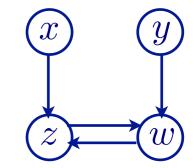
samples

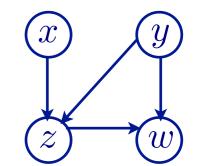
- edge presences/ absences
- pathways

assumptions, e.g.

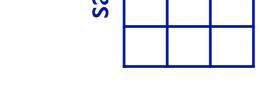
- causal Markov
- causal faithfulness
- functional form
- etc.

causal structures consistent with data



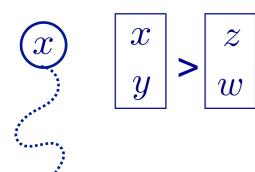


etc.



w x y z

background knowledge

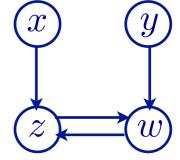


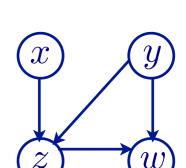
- edge presences/ absences
- pathways
- tier orderings

assumptions, e.g.

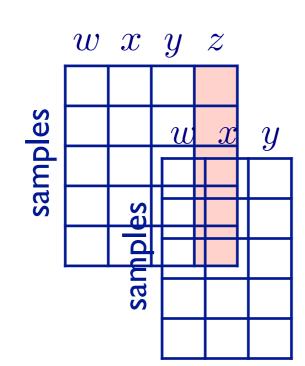
- causal Markov
- causal faithfulness
- functional form
- etc.

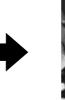
causal structures consistent with data





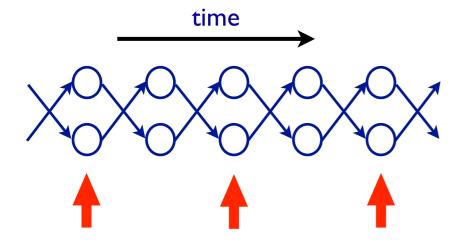
etc.





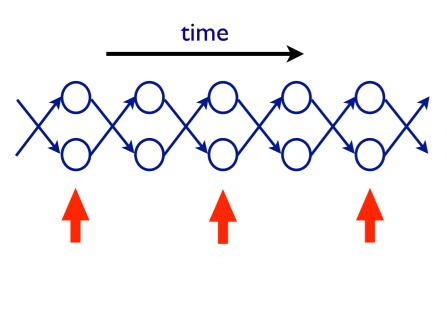
background knowledge \boldsymbol{x} edge presences/ assumptions, e.g. causal structures absences • causal Markov consistent with data pathways • causal faithfulness • tier orderings • functional form • "priors" • etc. ${\boldsymbol{\mathcal{X}}}$ y zwsamples etc. inference algorithm

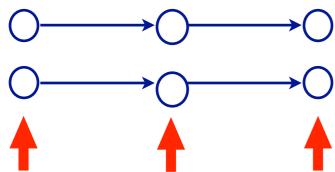
subsampled time series



(cf. work by Plis & Danks)

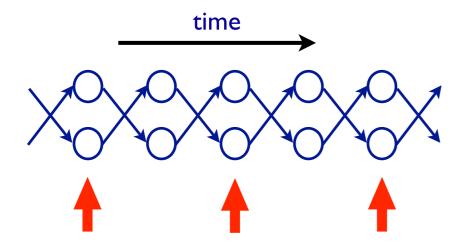
subsampled time series

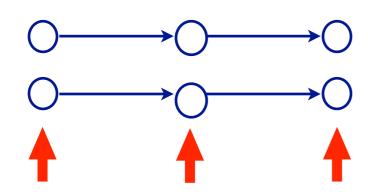




(cf. work by Plis & Danks)

subsampled time series

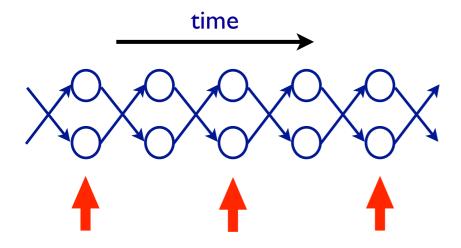


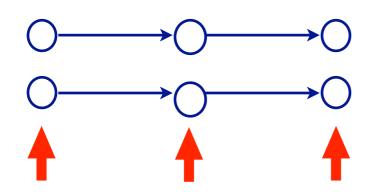


(cf. work by Plis & Danks)

inference algorithm

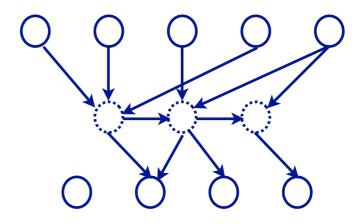
subsampled time series





(cf. work by Plis & Danks)

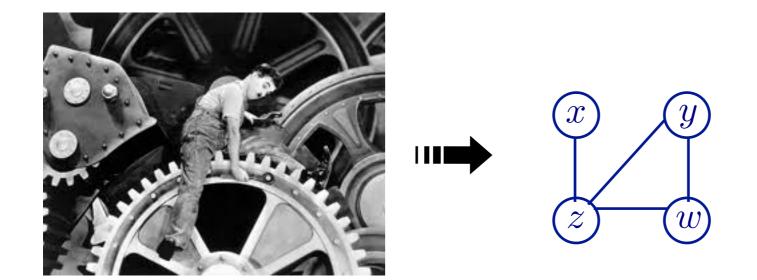
biological settings



(cf. work by Murray-Watters & Glymour)

inference algorithm

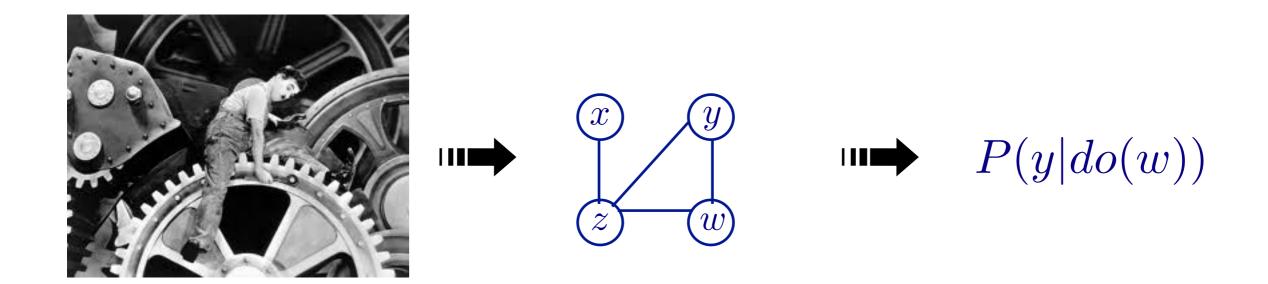
inference algorithm



inference algorithm

equivalence class

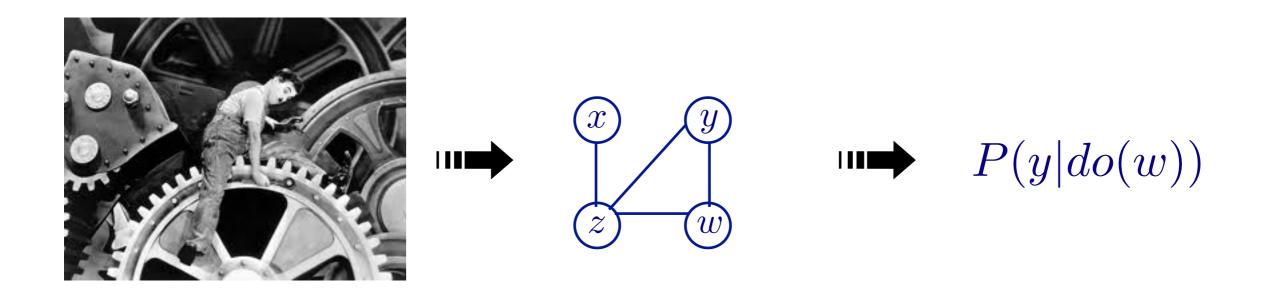
inference algorithm



equivalence class

causal effect

inference algorithm

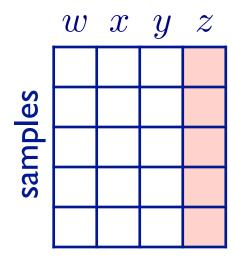


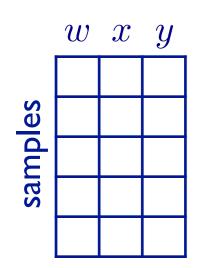
How to apply the do-calculus in settings when the causal structure is underdetermined?

equivalence class

causal effect

data sample

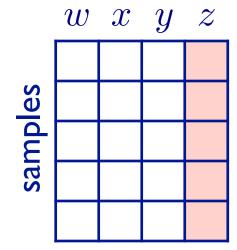


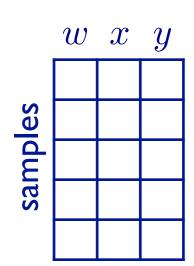


data sample

assumptions, e.g.

- causal Markov
- causal faithfulness
- etc.





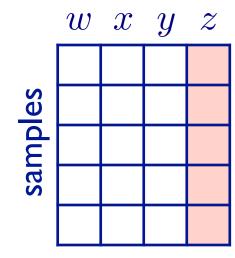
data sample

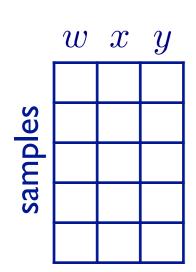
assumptions, e.g.

- causal Markov
- causal faithfulness
- etc.

background knowledge, e.g.

- pathways
- tier ordering
- "priors"
- etc.





data sample

assumptions, e.g.

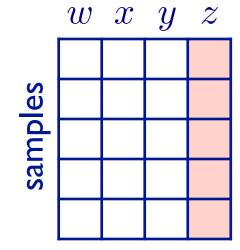
- causal Markov
- causal faithfulness
- etc.

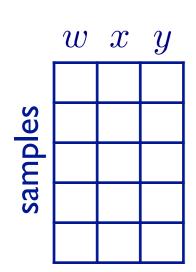
background knowledge, e.g.

- pathways
- tier ordering
- "priors"
- etc.

setting

- subsampled time series
- tier structure





data sample

assumptions, e.g.

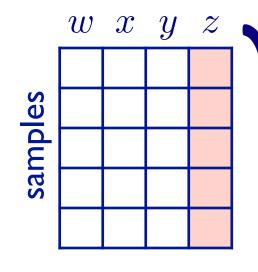
- causal Markov
- causal faithfulness
- etc.

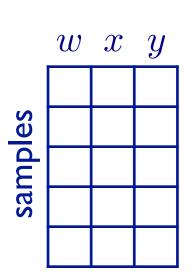
background knowledge, e.g.

- pathways
- tier ordering
- "priors"
- etc.

setting

- subsampled time series
- tier structure





(in)dependence constraints

$$x \not\perp \!\!\! \perp y |\mathbf{C}| |\mathbf{J}|$$

data sample

assumptions, e.g.

- causal Markov
- causal faithfulness
- etc.

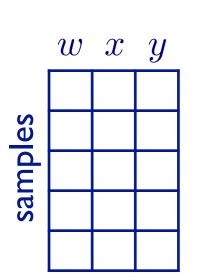
background knowledge, e.g.

- pathways
- tier ordering
- "priors"
- etc.

setting

- subsampled time series
- tier structure

w x y z



(in)dependence constraints

$$x \not\perp \!\!\! \perp y |\mathbf{C}| |\mathbf{J}|$$

Encode these as logical constraints on the underlying graph structure

(max) SAT-solver

High-Level

data sample

w x

assumptions, e.g.

- causal Markov
- causal faithfulness
- etc.

background knowledge, e.g.

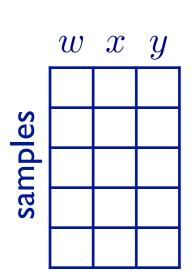
- pathways
- tier ordering
- "priors"
- etc.

setting

- subsampled time series
- tier structure

samples

y



(in)dependence constraints

$$x \perp \!\!\!\! \perp y |\mathbf{C}| |\mathbf{J}|$$

Encode these as logical constraints on the underlying graph structure

d-separation and independence

• Under the assumption of causal Markov and causal Faithfulness:

$$x \not\perp y \mid \mathbf{C} \mid \mathbf{J} \iff x \not\perp y \mid \mathbf{C} \mid \mathbf{J}$$

d-separation and independence

Under the assumption of causal Markov and causal Faithfulness:

$$x \not\perp y \mid \mathbf{C} \mid \mathbf{J} \iff x \not\perp y \mid \mathbf{C} \mid \mathbf{J}$$

x and y are d-connected given C when variables in J are subject to intervention

x and y are dependent

given C when variables

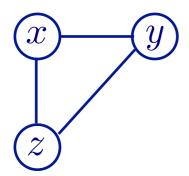
in J are subject to

intervention

$$x \perp \!\!\! \perp y$$

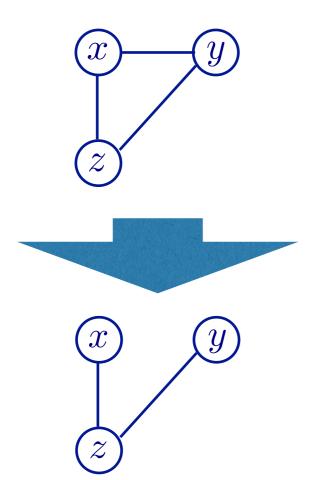
 $x \perp \!\!\!\perp y$

PC-algorithm



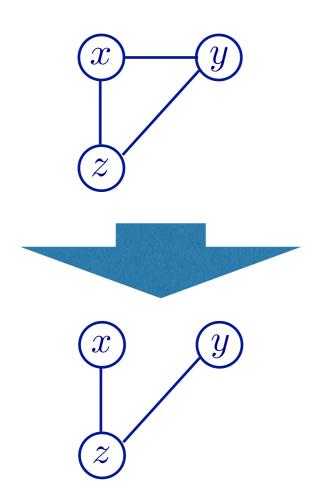
 $x \perp \!\!\!\perp y$

PC-algorithm



 $x \perp \!\!\!\perp y$

PC-algorithm

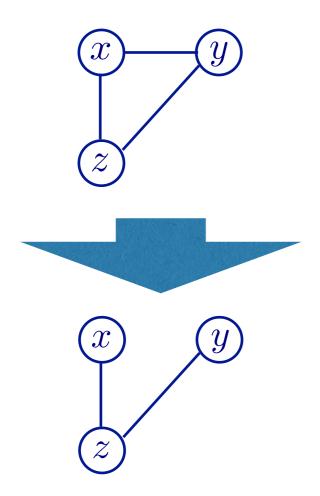


SAT-algorithm

define atoms
$$\left\{ \begin{array}{l} A:=``x\to y\in G" \\ B:=``y\to x\in G" \\ C:=``z\to x\in G" \\ D:=``z\to y\in G" \\ \end{array} \right. ...$$

 $x \perp \!\!\!\perp y$

PC-algorithm



SAT-algorithm

define atoms
$$\left\{ \begin{array}{l} A:=``x\to y\in G"\\ B:=``y\to x\in G"\\ C:=``z\to x\in G"\\ D:=``z\to y\in G"\\ \end{array} \right. ...$$

encode
$$\begin{cases} \neg A \land \neg B & \text{// direct edges} \\ \land \neg (C \land D) \text{// common causes} \\ \land \neg \dots & \text{// indirect paths} \end{cases}$$

 Formulate the independence constraints in propositional logic

$$x \perp \!\!\! \perp y \iff \neg A \land \neg B \dots$$

 $A = 'x \to y \text{ is present'}$

 Formulate the independence constraints in propositional logic

$$x \perp \!\!\! \perp y \iff \neg A \land \neg B \dots$$

 $A = 'x \to y \text{ is present'}$

• Encode the constraints into one formula.

$$\neg A \wedge \neg B \wedge \neg (C \wedge D) \wedge \neg \dots$$

 Formulate the independence constraints in propositional logic

$$x \perp \!\!\! \perp y \iff \neg A \land \neg B \dots$$

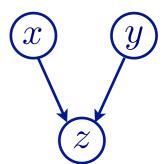
 $A = 'x \to y \text{ is present'}$

 Encode the constraints into one formula.

$$\neg A \wedge \neg B \wedge \neg (C \wedge D) \wedge \neg \dots$$

 Find satisfying assignments using a SAT-solver

$$A = false$$
 (x)
 $B = false \iff$



 Formulate the independence constraints in propositional logic

$$x \perp \!\!\! \perp y \iff \neg A \land \neg B \dots$$

 $A = 'x \to y \text{ is present'}$

• Encode the constraints into one formula.

$$\neg A \wedge \neg B \wedge \neg (C \wedge D) \wedge \neg \dots$$

 Find satisfying assignments using a SAT-solver

$$A = false \qquad \qquad (x) \quad (y)$$

$$B = false \iff (z)$$

very general setting (allows for cycles and latents) and trivially complete

 Formulate the independence constraints in propositional logic

$$x \perp \!\!\! \perp y \iff \neg A \land \neg B \dots$$

 $A = 'x \to y \text{ is present'}$

• Encode the constraints into one formula.

$$\neg A \wedge \neg B \wedge \neg (C \wedge D) \wedge \neg \dots$$

 Find satisfying assignments using a SAT-solver

$$A = false \qquad \qquad (x) \quad (y)$$

$$B = false \iff (z)$$

- very general setting (allows for cycles and latents) and trivially complete
- **BUT**: erroneous test results induce conflicting constraints: UNsatisfiable

• Statistical independence tests produce errors

constraint

$$x \not\perp z$$

$$y \not\perp z$$

$$y \not\perp \!\!\! \perp z$$

$$x \perp \!\!\! \perp y$$

$$x \perp \!\!\! \perp y|z$$

- Statistical independence tests produce errors
 - Conflict: no graph can produce the set of constraints

constraint

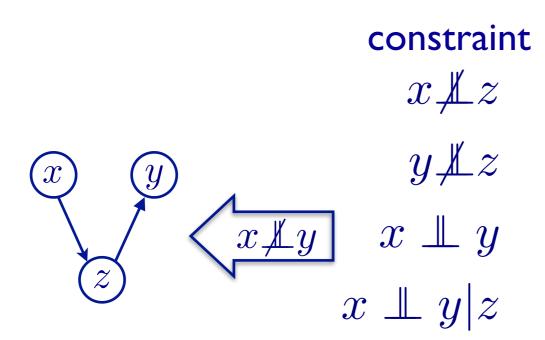
$$x \not\perp \!\!\! \perp z$$

$$y \not\perp \!\!\! \perp z$$

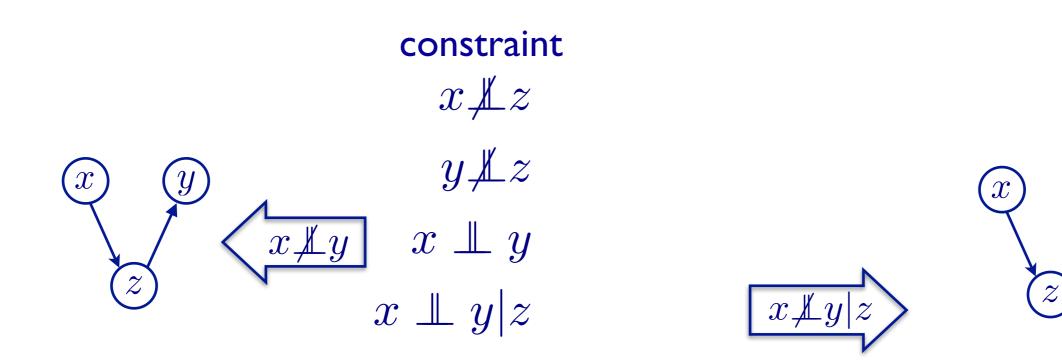
$$x \perp \!\!\! \perp y$$

$$x \perp \!\!\! \perp y|z$$

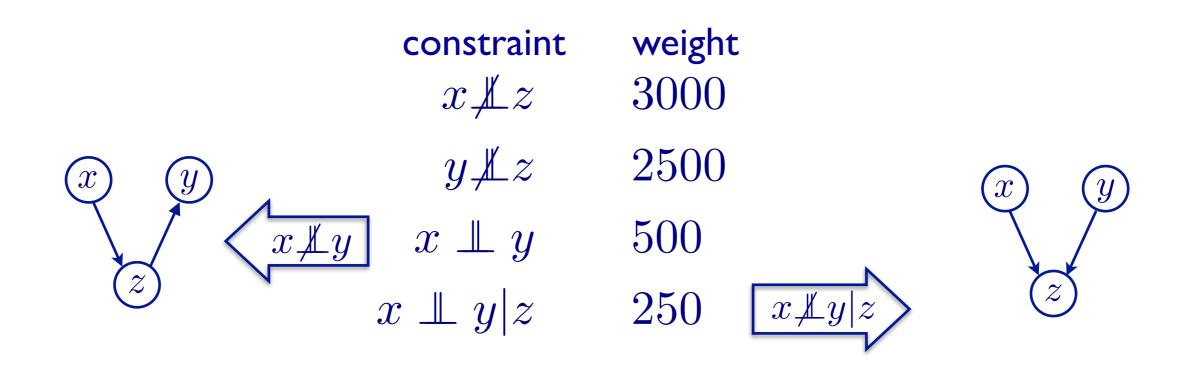
- Statistical independence tests produce errors
 - Conflict: no graph can produce the set of constraints



- Statistical independence tests produce errors
 - Conflict: no graph can produce the set of constraints



- Statistical independence tests produce errors
 - Conflict: no graph can produce the set of constraints



Constraint Satisfaction Approach

 INPUT: (in)dependence constraints weighted according to reliability

$$\min_{G} \sum_{k \text{ : constraint } k \text{ is } \mathbf{not} \text{ satisfied by } G$$

• OUTPUT: a graph G that minimizes the cost

Constraint Satisfaction Approach

 INPUT: (in)dependence constraints weighted according to reliability

$$\min_{G} \sum_{k \text{ : constraint } k \text{ is } \mathbf{not} \text{ satisfied by } G$$

• OUTPUT: a graph G that minimizes the cost

What are suitable weights?

- Constant weights
 - unit weights for all constraint

- Constant weights
 - unit weights for all constraint
- Hard dependencies
 - only treat rejections of the null-hypothesis as hard constraints, in line with classical statistics
 - give dependences infinite weight, maximize the independences (unit weight)
 in light of these dependences

- Constant weights
 - unit weights for all constraint
- Hard dependencies
 - only treat rejections of the null-hypothesis as hard constraints, in line with classical statistics
 - give dependences infinite weight, maximize the independences (unit weight)
 in light of these dependences
- Log weights
 - obtain the probability of an (in)dependence and weigh it according to the log of the probability
 - Model selection with Bayes rule:

$$x \not\perp y|C$$
 $x \perp y|C$ VS. $P(x|C)P(y|x,C)$ $P(x|C)P(y|C)$

- Constant weights
 - unit weights for all constraint
- Hard dependencies
 - only treat rejections of the null-hypothesis as hard constraints, in line with classical statistics
 - give dependences infinite weight, maximize the independences (unit weight) in light of these dependences
- Log weights
 - obtain the probability of an (in)dependence and weigh it according to the log of the probability
 - Model selection with Bayes rule:

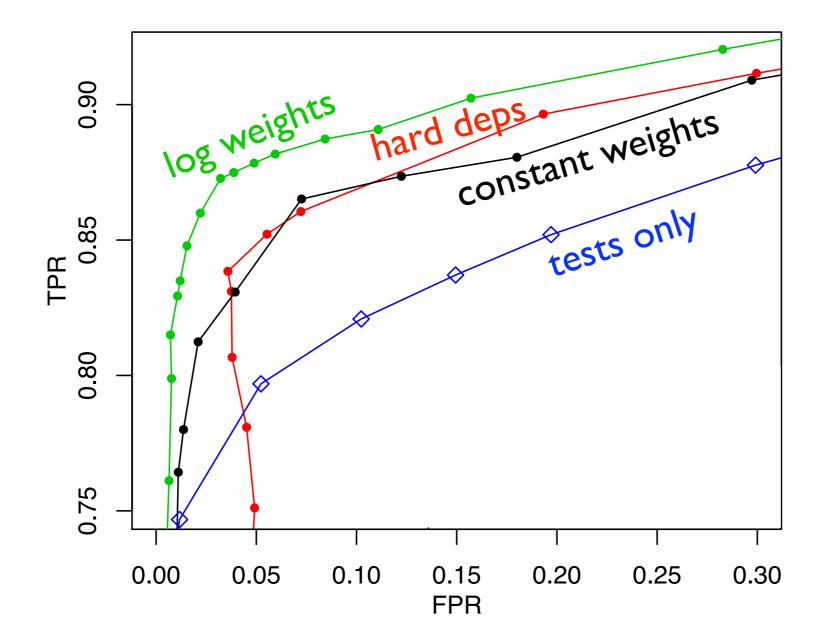
$$x \not\perp y|C$$
 $x \perp y|C$ VS. $P(x|C)P(y|x,C)$ $P(x|C)P(y|C)$

 probabilistic classifier: find G such that if it were true, test results would be optimal in the sense of a proper score

Optimization

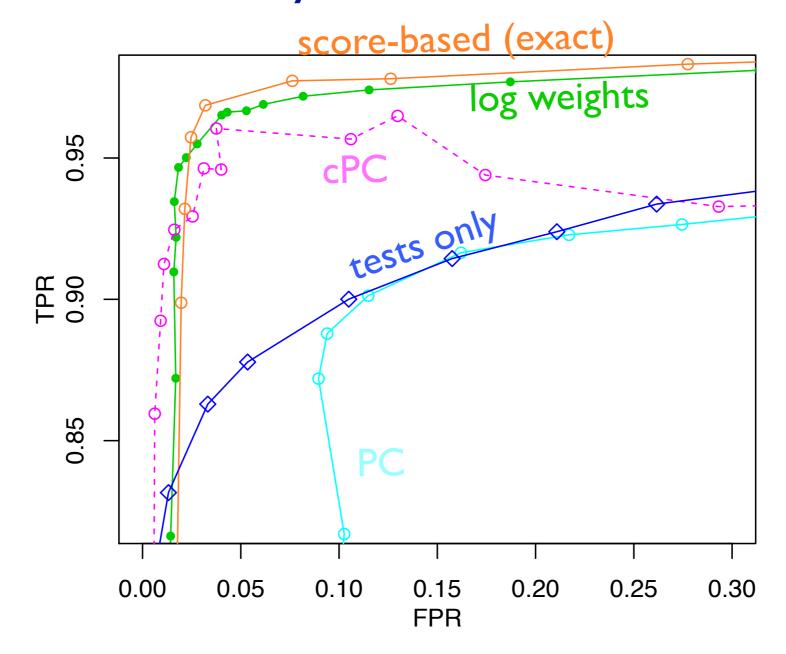
- Answer Set Programming (ASP) is a modern declarative programming paradigm
 - solver used: Clingo
 - SAT-solver and branch and bound algorithm
 - finds globally optimal weighted maxSAT solution

Simulation 1: cycles and latents



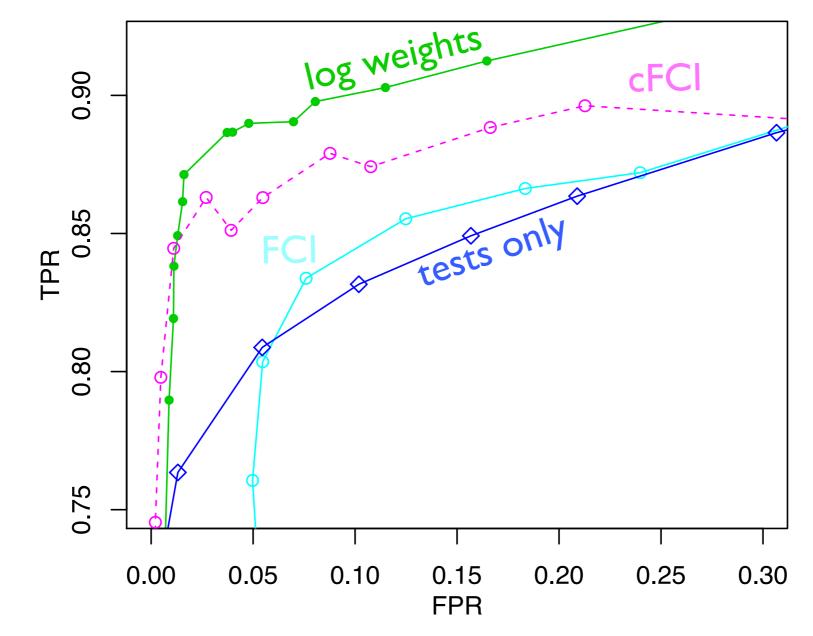
 ROC of dependences, passive observational data set, 6 observed variables, average degree 2; 500 samples, 200 models, linear Gaussian parameterization

Simulation 2: no cycles, no latents



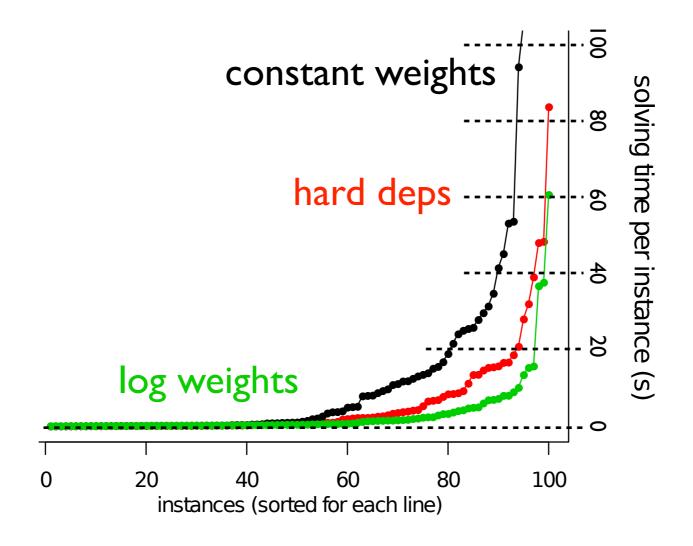
 cPC returns a fully determined output only 58/200 times at its optimum

Simulation 3: no cycles, but latents

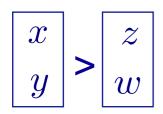


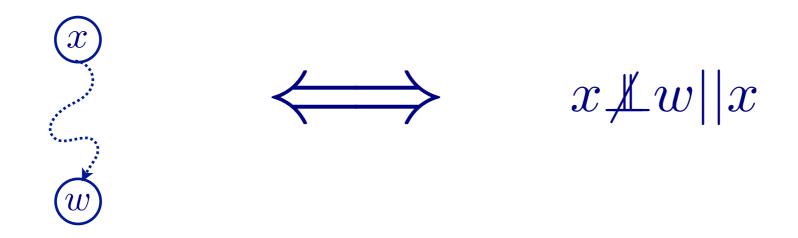
 cFCl only returns unambiguous results 61/200 times at its optimum

Simulation 4: Scalability

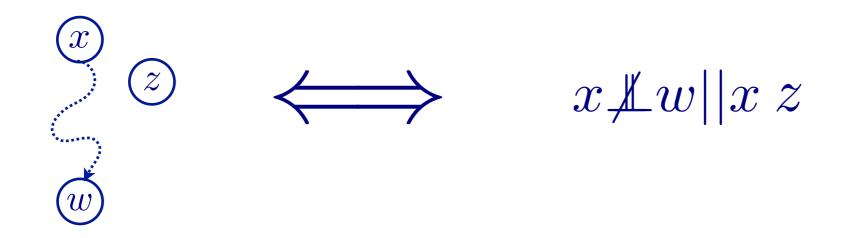


 up to 7 variables and only a few data sets for now (9x10^18 graphs)

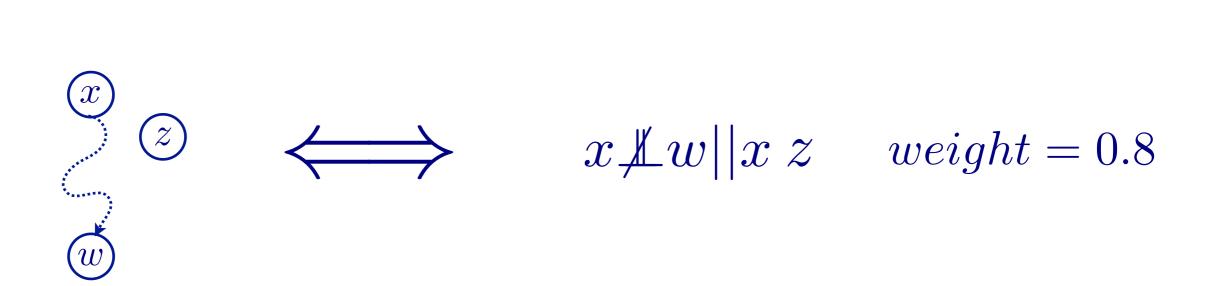




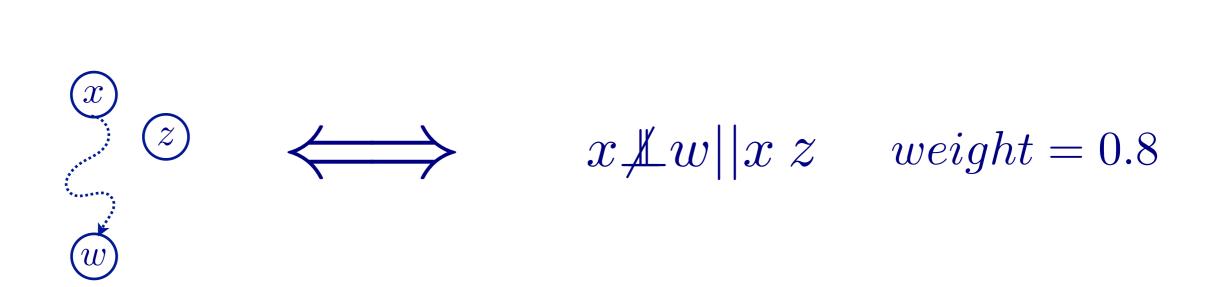
$$\begin{bmatrix} x \\ y \end{bmatrix} > \begin{bmatrix} z \\ w \end{bmatrix}$$



$$\begin{bmatrix} x \\ y \end{bmatrix} > \begin{bmatrix} z \\ w \end{bmatrix}$$

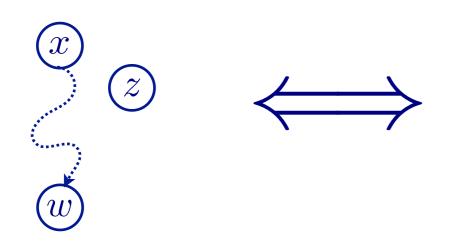


$$\begin{bmatrix} x \\ y \end{bmatrix} > \begin{bmatrix} z \\ w \end{bmatrix}$$



$$\begin{bmatrix} x \\ y \end{bmatrix} > \begin{bmatrix} z \\ w \end{bmatrix} \qquad \longleftrightarrow \qquad \begin{aligned} (x > z) \land (x > w) \\ \land (y > z \land (y > w)) \end{aligned}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} > \begin{bmatrix} z \\ w \end{bmatrix} \qquad \longleftrightarrow \qquad \begin{pmatrix} (x > z) \land (x > w) \\ \land (y > z \land (y > w)) \end{pmatrix}$$



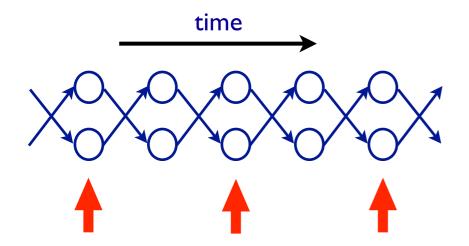
$$\iff x \not\perp w || x z \qquad weight = 0.8$$

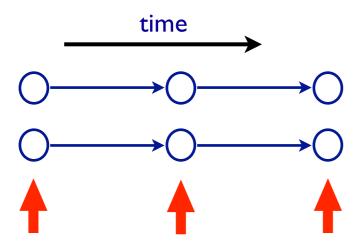
$$\begin{bmatrix} x \\ y \end{bmatrix} > \begin{bmatrix} z \\ w \end{bmatrix}$$

$$\iff \frac{(x > z) \land (x > w)}{\land (y > z \land (y > w)}$$

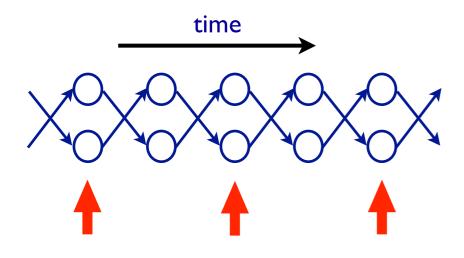
- specific probabilities for each graph
- soft sparsity constraint
- •

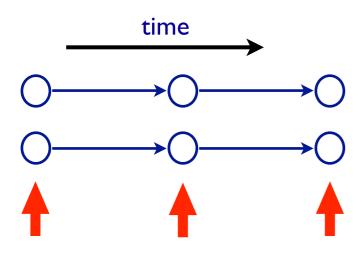
Settings





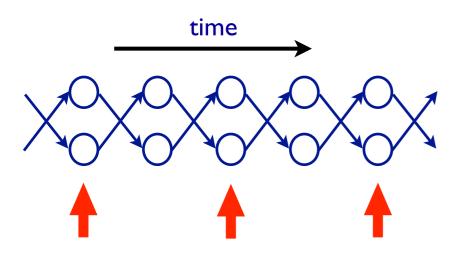
Settings

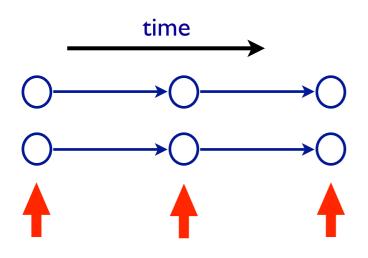




```
urange(1..5).
1 { u(U): urange(U) } 1.
\{ edge1(X,Y) \} :- node(X), node(Y).
path(X,Y,1) := edgel(X,Y).
path(X,Y,L) := path(X,Z,L-1), edgel(Z,Y),
L \ll U, u(U).
edgelu(X,Y) := path(X,Y,L), u(L).
conflu(X,Y) := path(Z,X,L), path(Z,Y,L),
node(X), node(Y), node(Z),
X < Y, L < U, u(U).
:- edgeu(X,Y), not edgelu(X,Y).
:- no edgeu(X,Y), edgelu(X,Y).
:- confu(X,Y), not conflu(X,Y).
:- no confu(X,Y), conflu(X,Y).
```

Settings





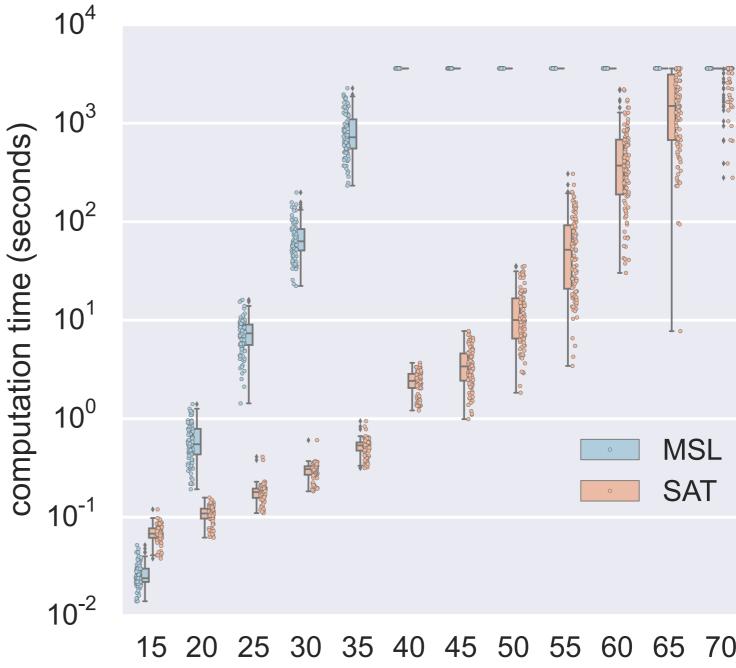
def. of how confounders arise due to subsampling

```
range for rate of subsampling
                   subsampling rate is unique
urange(1..5).
                            def. of edge in graph
1 { u(U): urange(U) } 1.
{ edge1(X,Y) } :- node(X), node(Y).
path(X,Y,1) := edgel(X,Y).
path(X,Y,L) := path(X,Z,L-1), edgel(Z,Y),
L \le U, u(U).
                          recursive def. of path
edgelu(X,Y) := path(X,Y,L), u(L).
                 def. of edge in subsampled graph
conflu(X,Y) := path(Z,X,L), path(Z,Y,L),
node(X),node(Y), node(Z),
X < Y, L < U, u(U).
:- edgeu(X,Y), not edgelu(X,Y).
:- no edgeu(X,Y), edgelu(X,Y).
:- confu(X,Y), not conflu(X,Y).
:- no confu(X,Y), conflu(X,Y).
         constraints on how edges in subsampled
```

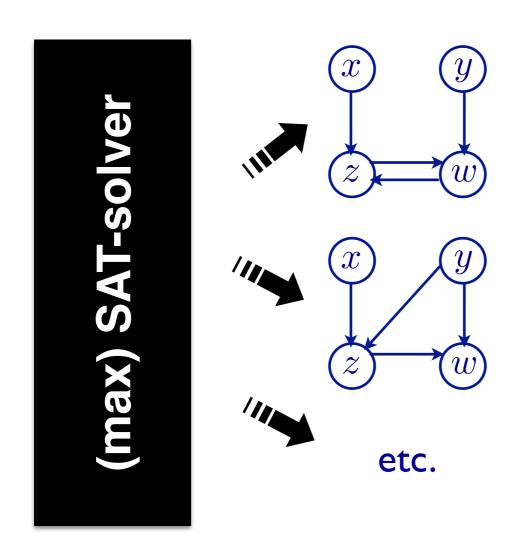
graph relate to edges in true graph

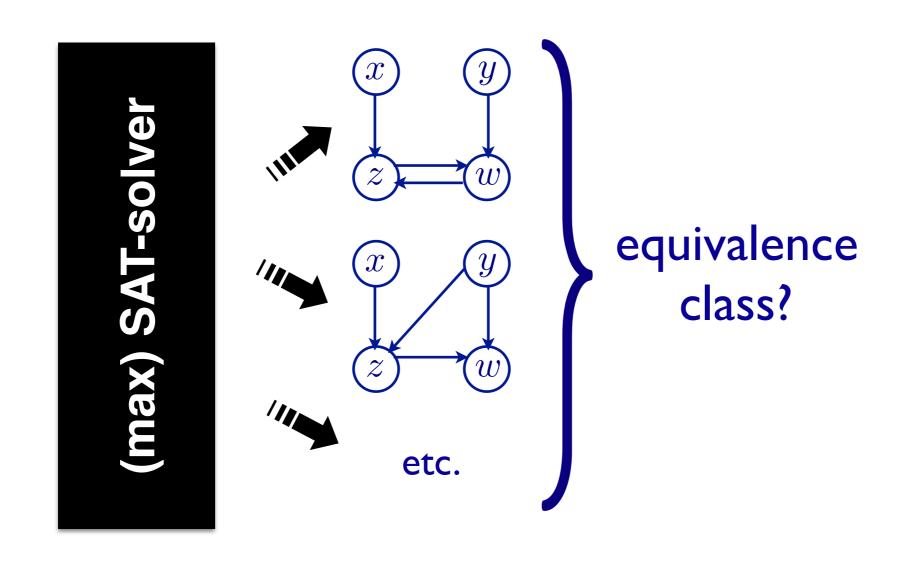
Runtime comparison

For a graph determined at subsampling rate 2, infer the equivalence class of graphs at the system time scale (I-step)

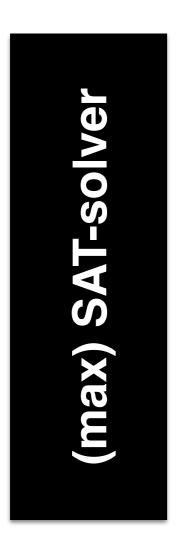


number of nodes in a graph





Query:



(max) SAT-solver

Query:

• list the structures in the equivalence class

(max) SAT-solver

Query:

- list the structures in the equivalence class
- what structural features are determined?
 - edges, confounders
 - ancestral relations
 - pathways

(max) SAT-solver

Query:

- list the structures in the equivalence class
- what structural features are determined?
 - edges, confounders
 - ancestral relations
 - pathways
- what are the highest scoring equivalence classes?

(max) SAT-solver

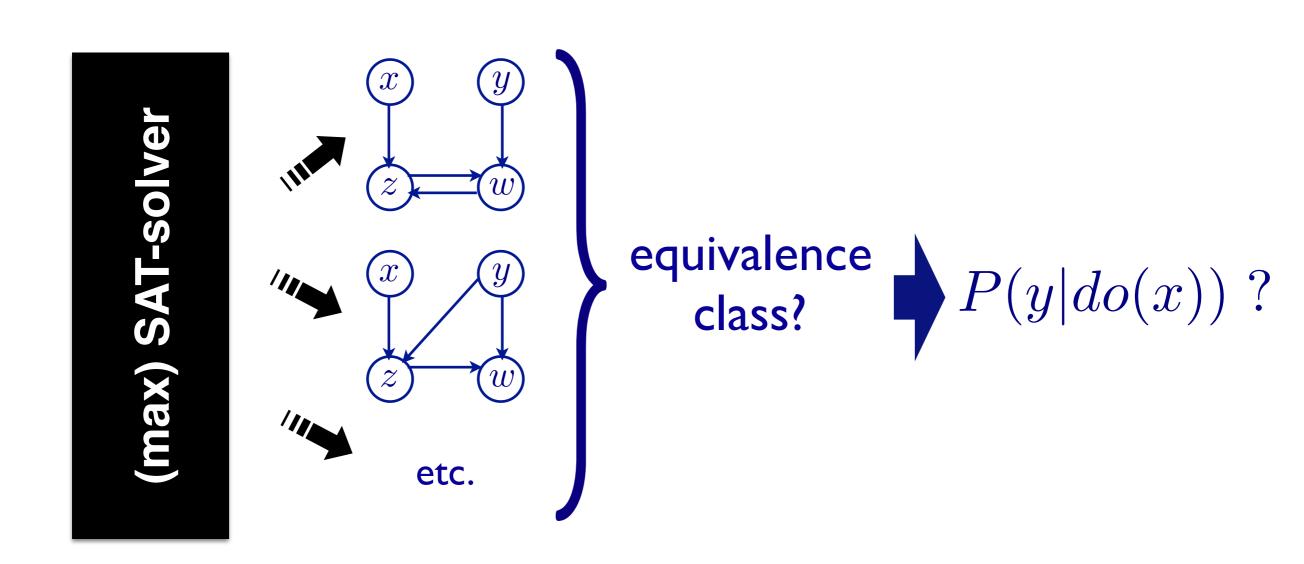
Query:

- list the structures in the equivalence class
- what structural features are determined?
 - edges, confounders
 - ancestral relations
 - pathways
- what are the highest scoring equivalence classes?

Response:

- enumeration of solutions
- "backbone" of the SAT-instance
- •

Computing Causal Effects



equivalence
$$P(y|do(x))$$
?

equivalence
$$P(y|do(x))$$
?

• enumerate each graph in the equivalence class and run the Tian-Shpitser algorithm to determine the causal effect?

- enumerate each graph in the equivalence class and run the Tian-Shpitser algorithm to determine the causal effect?
- Alternative:

- enumerate each graph in the equivalence class and run the Tian-Shpitser algorithm to determine the causal effect?
- Alternative:

do-calculus

Rule I (insertion/deletion of observations)

$$P(y|do(x), z, w) = P(y|do(x), w)$$
 if $Y \perp \!\!\! \perp Z|X, W||X$

Rule 2 (action/observation exchange)

$$P(y|do(x), do(z), w) = P(y|do(x), z, w)$$
 if $Y \perp I_Z|X, Z, W|X$

Rule 3 (insertion/deletion of actions)

$$P(y|do(x), do(z), w) = P(y|do(x), w)$$
 if $Y \perp I_Z|X, W|X$

- enumerate each graph in the equivalence class and run the Tian-Shpitser algorithm to determine the causal effect?
- Alternative:

do-calculus

Rule I (insertion/deletion of observations)

$$P(y|do(x), z, w) = P(y|do(x), w) \text{ if } Y \perp Z|X, W||X|$$

Rule 2 (action/observation exchange)

$$P(y|do(x), do(z), w) = P(y|do(x), z, w)$$
 if $Y \perp I_Z|X, Z, W|X$

Rule 3 (insertion/deletion of actions)

$$P(y|do(x), do(z), w) = P(y|do(x), w)$$
 if $Y \perp I_Z|X, W||X|$

- enumerate each graph in the equivalence class and run the Tian-Shpitser algorithm to determine the causal effect?
- Alternative:

do-calculus

Rule I (insertion/deletion of observations)

$$P(y|do(x), z, w) = P(y|do(x), w) \text{ if } Y \perp Z|X, W||X|$$

Rule 2 (action/observation exchange)

$$P(y|do(x), do(z), w) = P(y|do(x), z, w)$$
 if $Y \perp I_Z|X, Z, W|X$

Rule 3 (insertion/deletion of actions)

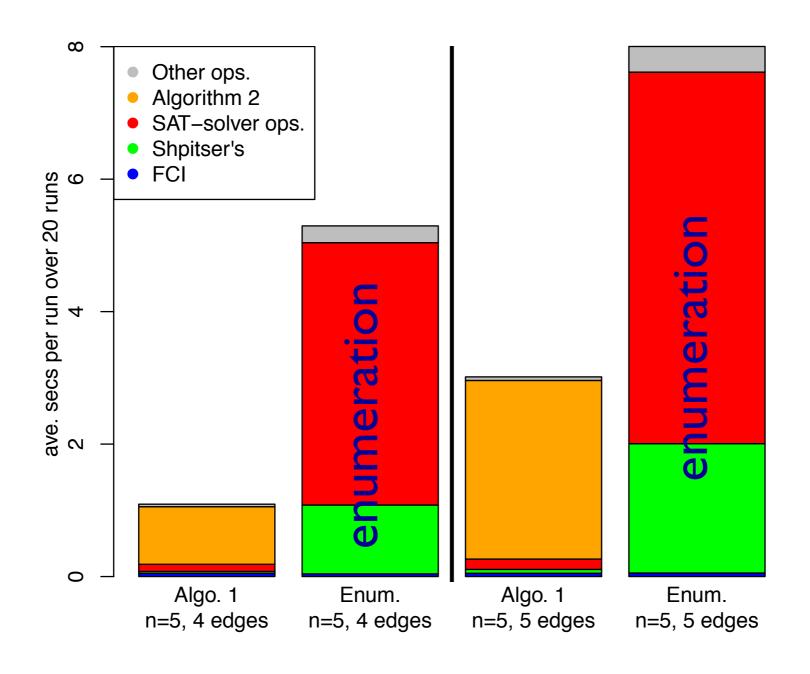
$$P(y|do(x), do(z), w) = P(y|do(x), w) \text{ if } Y \perp I_Z|X, W||X$$

search in the equivalence class over the possible applications of the do-calculus rules by querying the satisfaction of their conditions

Algorithm for the do-calculus when the graph is unknown

- determine the equivalence class implicitly using a SAT-solver
- query one solution graph G
- run the Tian-Shpitser-algorithm on G to determine whether the causal effect P(y|do(w)) is determined for G
- if it is, determine which do-calculus rules were applied and record the constraints C_1, \ldots, C_n that were used
 - add $\neg C_1 \lor \ldots \lor \neg C_n$ as a constraint to refine the current equivalence class
- if not, determine the "hedge" H and add $\neg H$ to refine the current equivalence class
- repeat until the equivalence is exhausted
- return the set of estimates of the causal effect and NA if it cannot be determined in one member of the equivalence class

Comparison of our approach to enumeration



In sum: do-calculus using a SAT-solver

• enables computation of the causal effect when the graph structure is underdetermined

In sum: do-calculus using a SAT-solver

- enables computation of the causal effect when the graph structure is underdetermined
- how should one estimate a causal effect when the equivalence class of causal structures was determined on the basis of a set of conflicted constraints?

In sum: do-calculus using a SAT-solver

- enables computation of the causal effect when the graph structure is underdetermined
- how should one estimate a causal effect when the equivalence class of causal structures was determined on the basis of a set of conflicted constraints?
- some avenues one can explore with the query-based approach:
 - explore more closely the conditions involved in determining the causal effect
 - find multiple different estimators
 - even though the overall graph structure may not be determinable without resolving conflicts, some causal effects may be

Conclusion

- the use of general purpose SAT-solvers provides an extraordinarily versatile tool for causal discovery
- it opens new avenues for handling background knowledge and the computation of causal effects when the causal structure is underdetermined
- it provides a query based approach in contrast to a representation of an equivalence class of causal structures
- it suggests that current general purpose constraint solvers outperform domain specific approaches

References

- Hyttinen, Eberhardt & Järvisalo (2015). Do-calculus when the true graph is unknown. UAI 2015.
- Hyttinen, Eberhardt & Järvisalo (2014). Constraint-based Causal Discovery: Conflict Resolution with Answer Set Programming. UAI 2014.
- Hyttinen, Hoyer, Eberhardt & Järvisalo (2013). Discovering Cyclic Causal Models with Latent Variables: A General SAT-Based Procedure. UAI 2013.
- {Hyttinen, Plis, Danks, Eberhardt & Järvisalo} (work in progress). Causal Discovery from Subsampled Time Series Data by Constraint Optimization.

Other relevant work that is closely related:

- Triantafillou & Tsamardinos (2015). Constraint-based Causal Discovery from Multiple Interventions Over Overlapping Variable Sets. JMLR 16(Nov):2147–2205.
- Claassen & Heskes (2011). A logical characterization of constraint-based causal discovery. UAI 2011.
- Triantafillou, Tsamardinos & Tollis (2010). Learning Causal Structure from Overlapping Variable Sets. AISTATS 2010.

Thank you!