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How to apply the do-calculus in settings
when the causal structure is
underdetermined?
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d-separation and independence

® Under the assumption of causal Markov and causal Faithfulness:

v Ly|Cl|I <= = Ly|C||J

x and y are d-connected x and y are dependent
given C when variables - given C when variables
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Example with 3 variables: x, y, z

r 1 vy
PC-algorithm SAT-algorithm
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encode (A N-B // direct edges
constraint : A —|(C A D)// common causes

\ AN // indirect paths
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SATl-based Causal Discovery

® Formulate the independence rly < "AAN-DB...
constraints in propositional

logic A = ‘x — vy is present’

® Encode the constraints into A AN =B A —l(C A D) A —
one formula.

® Find satisfying assignments A = false
using a SAT-solver B = false <—

B very general setting (allows for cycles and latents) and trivially
complete
B BUT: erroneous test results induce conflicting constraints:

UNsatisfiable
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Conflicts and Errors

® Statistical independence tests produce errors

B Conflict: no graph can produce the set of constraints

constraint  weight
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Constraint Satisfaction Approach

® INPUT: (in)dependence constraints weighted according to
reliability

HllIlE ’LU

. constraint k is not satisfied by G

e OUTPUT: a graph G that minimizes the cost

What are suitable weights?
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Weighting Schemes

® Constant weights
= unit weights for all constraint

® Hard dependencies
= only treat rejections of the null-hypothesis as hard constraints, in line with
classical statistics
- give dependences infinite weight, maximize the independences (unit weight)
in light of these dependences

® |Log weights
- obtain the probability of an (in)dependence and weigh it according to the
log of the probability
= Model selection with Bayes rule:

z Ly|C z Ly|C

P(x|C)P(y)z,C) e P(x|C)P(3|C)

= probabilistic classifier: find G such that if it were true, test results would be
optimal in the sense of a proper score

I5



Optimization

® Answer Set Programming (ASP) is a modern declarative
programming paradigm

= solver used: Clingo
= SAT-solver and branch and bound algorithm
= finds globally optimal weighted maxSAT solution
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Simulation 3: no cycles, but latents

0.90
I

0.85
I

TPR

0.80
I

0.75
I

O
I I I I I I I

000 005 010 015 020 025  0.30
FPR



Simulation 4: Scalability
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Settings

time

=» O O

urange(1l..5).

1 { u(U): urange(U) } 1.

{ edgel(X,Y) } :- node(X), node(Y).
path(X,Y,1l) :- edgel(X,Y).
path(X,Y,L) :- path(X,Z,L-1), edgel(Z,Y),

L <= U, u(U0).

edgelu(X,Y) :- path(X,Y,L), u(L).

conflu(X,Y) :- path(Zz,X,L), path(Z,Y,L),
node (X),node(Y), node(Z),
X <Y, L <U, u(u).

:— edgeu(X,Y), not edgelu(X,Y).
:— no _edgeu(X,Y), edgelu(X,Y).
:— confu(X,Y), not conflu(X,Y).
:-= no _confu(X,Y), conflu(X,Y).
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Sett'“gs L\r/ange for rate of subsampling

. subsampling rate is unique
time urange(l..5). L\/ P1ing g

def. of edge in graph
:x<§§><:§:><E§><i§;><E§>K: 1 { u(U): urange(U) } 1.L\/ 5 i
{ edgel(X,Y) } :- node(X), node(Y).
f f f path(X,Y,1l) :- edgel(X,Y).

path(X,Y,L) :- path(X,Z,L-1), edgel(Z,Y),

L <= U, u(U0).
| \[ recursive def. of path
time

> edgelu(X,Y) :- path(X,Y,L), u(L).
A\

def. of edge in subsampled graph

conflu(X,Y) :- path(Zz,X,L), path(Z,Y,L),
node (X),node(Y), node(Z),

f f X <Y, L <U, u(U).

:— edgeu(X,Y), not edgelu(X,Y).
:— no _edgeu(X,Y), edgelu(X,Y).
:— confu(X,Y), not conflu(X,Y)

def. of how confounders :— no_confu(X,Y), conflu(X,Y). /\

= O O
O
O

arise due to subsampling

constraints on how edges in subsampled
graph relate to edges in true graph
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Output of Causal Search Algorithms
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Query:

* list the structures in the
equivalence class

* what structural features are
determined!?
- edges, confounders
- ancestral relations
- pathways

* what are the highest scoring
equivalence classes!?

Response:
* enumeration of solutions
e “backbone” of the SAT-instance
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Computing Causal Effects
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equivalence *P(y|d0(a’;)) ?

class?

® enumerate each graph in the equivalence class and run the
Tian-Shpitser algorithm to determine the causal effect?

® Alternative:

do-calculus

Rule | (insertion/deletion of observations)

P(y|do(x), z,w) = P(y|do(x),w) if Y 1L Z| X, W||X
Rule 2 (action/observation exchange)

P(yldo(z),do(z),w) = P(y|ldo(x), z,w) if Y 1L I7|X,Z, W||X
Rule 3 (insertion/deletion of actions)

P(yldo(x),do(z),w) = P(y|do(z),w) if Y 1L I7| X, W||X
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equivalence *P(y|d0(a’;)) ?

class?

® enumerate each graph in the equivalence class and run the
Tian-Shpitser algorithm to determine the causal effect?

® Alternative:

do-calculus
Rule | (insertion/deletion of observations)
Plyldo(s). ) = Plyldola), Y L 71X, W]
Rule 2 (action/observation exchange)
P(yldo(z),do(z),w) = P(y|do(x), z, w
Rule 3 (insertion/deletion of actions)
Plyldo(z). do(2). ) — Plyldo(a), wLY L 121X, WX
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equivalence *P(y|d0(a’;)) ?

class!?
® enumerate each graph in the equivalence class and run the
Tian-Shpitser algorithm to determine the causal effect?

® Alternative:

do-calculus
Rule | (insertion/deletion of observations)

P(yldo(z), z,w) = P(y!dO(fL‘),w
Rule 2 (action/observation exchange)

P(y|do(x),do(z), w) = P(y|do(z), 2, w
Rule 3 (insertion/deletion of actions)

P(y|do(x), do(z), w) = P(y|do(z), w
= search in the equivalence class over the possible applications

of the do-calculus rules by querying the satisfaction of their
conditions

26



Algorithm for the do-calculus when the graph is unknown

® determine the equivalence class implicitly using a SAl-solver
® query one solution graph G

® run the Tian-Shpitser-algorithm on G to determine whether
the causal effect P(y|do(w)) is determined for G

® if it is, determine which do-calculus rules were applied and
record the constraints (1, ..., C,, that were used

® add —C'; V...V (), as a constraint to refine the current
equivalence class

® if not, determine the “hedge” H and add —H to refine the
current equivalence class

® repeat until the equivalence is exhausted

® return the set of estimates of the causal effect and NA if it
cannot be determined in one member of the equivalence class
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Comparison of our approach to enumeration

e0)
Other ops.
Algorithm 2
® SAT-solver ops.
® Shpitser's
o — ® FCI

ave. secs per run over 20 runs
4
|

2
I

)

Algo. 1 Enum. Algo. 1 Enum.
n=5, 4 edges n=>5, 4 edges n=5, 5 edges n=>5, 5 edges
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structure is underdetermined
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In sum: do-calculus using a SAT-solver

® enables computation of the causal effect when the graph
structure is underdetermined

B how should one estimate a causal effect when the
equivalence class of causal structures was determined on the
basis of a set of conflicted constraints!?

® some avenues one can explore with the query-based
approach:

- explore more closely the conditions involved in
determining the causal effect

= find multiple different estimators

- even though the overall graph structure may not be
determinable without resolving conflicts, some causal
effects may be

29



Conclusion

® the use of general purpose SAl-solvers provides an
extraordinarily versatile tool for causal discovery

® it opens new avenues for handling background knowledge and
the computation of causal effects when the causal structure is
underdetermined

® it provides a query based approach in contrast to a
representation of an equivalence class of causal structures

® it suggests that current general purpose constraint solvers
outperform domain specific approaches

30
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