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Learning Networks from Single Cells

 Idea: Use natural stochastic variation within a cell 
population and treat measurements of each individual 
cell as a sample for learning



Each cell is a point
of information
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Data-Driven Learning

How does protein A influence protein B?

Assumptions: 

 Molecular influences 
create statistical 
dependencies

 We treat each cell as an 
independent sample of 
these dependencies. 



Can we use single cells to learn signaling 
networks? 

Sachs*, Perez*, Pe’er* et.al.  Science 2005
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Datasets  
of cells

• condition ‘a’
• condition ‘b’
•condition…‘n
’

12 Color Flow Cytometry

perturbation a

perturbation n

perturbation b

Conditions (96 well format)

Primary Human T-Lymphocyte Data

Assumptions: 

 Treat perturbation as an “ideal 
intervention” (Cooper, G. and C. Yoo (1999).
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What did we need to succeed? 
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Large number of samples and single 
cell resolution are needed for success





Spectral overlap in flow cytometry

http://www.dvssciences.com/technical.html
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Mass cytometry work flow
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We get 45 dimensions 
simultaneously in millions

of individual cells 

Bendall*, Simonds* et. al. Science 2011

Mass cytometry: a game changer



Decreased spectral 

overlap



Increased 

dimensionality

Mass cytometry

45 dimensions

and counting



How does signal processing differ 
between subtypes? 

Krishnaswamy et.al.  Science 2014
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Signaling Through T-cell Maturation

Naïve
(CD44-) 

Effector/Memory
(CD44+) 

Lymph

 Naïve and effector memory CD4+ T-cells have similar 
signaling network, yet these respond differently

 Our surface panel has enough markers to resolve key 
T-cell subsets together with their signaling

 They have been stimulated and processed in the same 
tube allowing for direct comparison
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Real Mass Cytometry Data
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Each point is a cell 

Units of measurement: log-scale transformed molecule counts 

pCD3z

pSLP76 
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Scatterplots Reveal Only Range

Pre-Stimulation Post-Stimulation 
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Cannot discern effect of stimulation



Kernel Density 
Estimationp
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Kernel Density Estimation (KDE) learns 
underlying probability distribution 
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Pre-Stimulation Post-Stimulation 

KDE obscures X-Y relationship 

 Molecules shift together 

 Coarse functional relationship



Conditioning unveils X-Y Relationship

Conditional distribution for each X-slice is computed

 Captures behavior across full dynamic range

 Captures behavior of small populations  of 
responding cells



Change in Signal Transfer Relationship

Pre-Stimulation Post-Stimulation 

X-increase X-increase

Y-increase

Y-increase

This is beyond “increasing pCD3z levels”



How do we quantify information 
transmitted by an edge? 

The high local joint 
density biases 
mutual information 
assessment

DREMI resamples Y 
from conditional 
density in each X-
slice to reveal 
relationship between 
X and Y

The key is we want to model P(Y|X)

Rather than P(X,Y)



DREMI captures “edge strength”
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Comparing Naïve to Effector memory T-cells 

 pSLP76 responds more 
strongly in effmem T-
cells

 The “edge” transmits 
pCD3z levels more  
faithfully  in naïve T-
cells
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Comparing Naïve to Effector memory T-cells 

 Increased transmission of 
input in naïve T-cells 
propagates down

 For a longer duration



Protein Activation: a Different View

• sdgfd Levels of molecules are higher in Effmem

 Effmem cells need less antigen to trigger

 Naïve cell responses are more tailored to input



DREMI Reveals Alternative Pathway

Effmem cells have alternate 
input via AKT pathway 



Predicting differences in “edge” strength

Pre-erk-KD level
Post-erk-KD level

.65

Pre-erk-KD level
Post-erk-KD level

.26

pERK

p
S6

pERK

p
S6

Naïve (4m) Effmem (4m)

Predictions for ERK KO mouse

 Erk_KO should impact pS6 more 
in Naïve cells

 Difference should accentuate at 
the 3 minutes after stimulus



Validation of edge strength prediction 

Replicate 1 Replicate 2

Average pS6
B6 – ERK_KO

 We validated that the influence of pERK on pS6 is 
stronger in Naïve T-cells. 

 Similar validation for differences between CD4 and 
CD8



The devil is in the details 

 KDE's interpolate over areas where there are no 
samples, so they correct for gaps to some extent.

 Histogram approach, fast,  but sensitive to 
bandwidth

 Kernel approach, slow and tedious need to integrate 
all kernels at every point of evaluation, most 
heuristics sensitive to noise



Hybrid Method for Density Estimation

• We take a hybrid method for density estimation.

• Use the speed of histogram and the smoothness of 
Kernels:

• 1. Build a histogram of the initial data

• 2. Obtain a good estimate of the bandwidth

• 3. Smooth the histogram using the bandwidth.

• Goal:
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Botev et.al., Annals of Statistic, 2010



Connection to heat equation

 Heat Equation:

 It governs the distribution of temperature in a region over 
time. 

∂f
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A Gaussian kernel,                                      (which is what we want) is the unique

solution to the above equation!
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“Spreading of Heat” over time akin to 
Smoothing Data

 At t = 0, the initial condition is a 
delta peak at  0. For any t>0, we 
get a Gaussian.

 In finite domain, the solution to 
heat equation is a Fourier series in 
cosine

 Motivates us to work in frequency 
domain.

=> Solution = Discrete Cosine 
Transforms

 Facilitates rapid computation
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Computing in frequency domain
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Original Histogram

Final Density Estimate

Invert 
Smooth 
DCT

This is equivalent to solving heat 
diffusion in a bound space



Smoothing in action:
increasing the diffusion



Diffusion KDE

34

Diffusion-based KDE 
estimate is faster and 
smoother
Botev, et al., Annals of Stats, 2011



Reconfiguring Signaling Edges 
Driving EMT
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Epithelial-mesenchymal transition (EMT)

Epithelial                                                                                          Mesenchymal

 The cells transition between two very 
different states. 

 Can we understand the changes in signaling 
and phenotype underlying this transition? 

Induce EMT by treating a breast cancer cell line with TGFB



EMT: State Change in Cells
 Cellular heterogeneity: both epithelial and 

mesenchymal cells coexist during transition.

• Both epithelial and mesenchymal cellsMMTV-PyMT

E-Cadherin

Vimentin

Both epithelial and mesenchymal
cells at day 3



Early, young

Late, mature

A trajectory approach to development

 Single cell studies are finding that sometimes development is a 
continuous progression 

 Strong signal in the data, simple methods get rough 
approximation, but hard to get accurate progression.



The Challenge: Non-Linearity
 Development is highly non-linear in n-D space

 Euclidian distance is a poor measure for 
chronological distance 



Wanderlust Approach

• Convert data to a k nearest 
neighbors graph
• Each cell is a node
• Each cell only “sees” its local 

neighborhood

Bendall*, Davis*, Amir* et.al.  Cell 2014



Derive Trajectory using 
“graph walk”

s

T

• What is the position of a cell along 
the trajectory?

- Start from an early cell
- Define distance by walking 

along graph

 But, very noisy data, many 
additional tricks needed.



Wanderlust

1. Convert data into a set of klNN graphs

2. In each graph, iteratively refine a trajectory using a 
set of random waypoints

3. The solution trajectory is the average over all graph 
trajectories

A graph based trajectory detection 
algorithm. Wanderlust is scalable, 

robust and resistant to noise
We use randomness to overcome noise!



Refine distances using waypoints

s Choose M random 
waypoints, l1…lM



Refine distances using waypoints

Next, find the shortest 
path from each waypoint li
to n

Short distances are more 
reliable and help refine 

order locally
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l1 aligned SP

l2 aligned SP

l3 aligned SP

l4 aligned SP

lM aligned SP

New orientation trajectory

Contribution of li is weighed 
by its distance from p

Refine distances using waypoints



klNN graph

 klNN: k-out-of-l nearest neighbors

 Generate l nearest neighbors graph

 To generate one klNN graph,

 For each node, pick k neighbors randomly

Initial lNN graph klNN #1 klNN #2 klNN #3

Each shortcut appears in only a small 
number of klNN-graphs



Wanderlust Trajectory

 Wanderlust infers path from Hematopoietic Stem Cells to 
immature B cells from a single sample of human bone marrow.

 Matches prior knowledge, robust and reproducible across 7 
individuals. 

 Identified and validated 3 novel rare progenitor states (0.007% of 
cells)
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