"A single cell approach to interrogating network rewiring in EMT" Dana Pe'er

> Department of Biological Science Department of Systems Biology Columbia University

Learning Networks from Single Cells

 Idea: Use natural stochastic variation within a cell population and treat measurements of each individual cell as a sample for learning

Data-Driven Learning

Assumptions:

- Molecular influences create statistical dependencies
- We treat each cell as an independent sample of these dependencies.

Abundance of Protein A

How does protein A influence protein B?

Can we use single cells to learn signaling networks?

Karen Sachs Omar Perez Doug Lauffenburger Garry Nolan

Sachs*, Perez*, Pe'er* et.al. Science 2005

Primary Human T-Lymphocyte Data

Assumptions:

 Treat perturbation as an "ideal intervention" (Cooper, G. and C. Yoo (1999).

Inferred T cell signaling map

[Sachs et al, Science 2005]

What did we need to succeed?

420 instead of 6000 samples

420 averaged samples

Large number of samples and single cell resolution are needed for success

Spectral overlap in flow cytometry

(stable isotope) atomic mass

How does signal processing differ between subtypes?

Smita Krishnaswamy

Matthew H. Spitzer Michael Mingueneau Sean C Bendall Oren Litvin, Erica Stone **Garry Nolan**

Krishnaswamy et.al. Science 2014

Signaling Through T-cell Maturation

- Naïve and effector memory CD4+ T-cells have similar signaling network, yet these respond differently
- Our surface panel has enough markers to resolve key T-cell subsets together with their signaling
- They have been stimulated and processed in the same tube allowing for direct comparison

Real Mass Cytometry Data

Units of measurement: log-scale transformed molecule counts

Scatterplots Reveal Only Range

pCD3z

pCD3z

Cannot discern effect of stimulation

Kernel Density Estimation (KDE) learns underlying probability distribution

KDE obscures X-Y relationship

Pre-Stimulation

- Molecules shift together
- Coarse functional relationship

Conditioning unveils X-Y Relationship

- Captures behavior across full dynamic range
- Captures behavior of small populations of responding cells

Change in Signal Transfer Relationship

This is beyond "increasing pCD3z levels"

How do we quantify information transmitted by an edge?

#cells: N N N N N N N N N

DREMI captures "edge strength"

Comparing Naïve to Effector memory T-cells

- pSLP76 responds more strongly in effmem Tcells
- The "edge" transmits pCD3z levels more faithfully in naïve Tcells

Comparing Naïve to Effector memory T-cells

- Increased transmission of input in naïve T-cells propagates down
- For a longer duration

Protein Activation: a Different View

DREMI Reveals Alternative Pathway

Predicting differences in "edge" strength

Predictions for ERK KO mouse

- Erk_KO should impact pS6 more in Naïve cells
- Difference should accentuate at the 3 minutes after stimulus

Validation of edge strength prediction

- We validated that the influence of pERK on pS6 is stronger in Naïve T-cells.
- Similar validation for differences between CD4 and CD8

The devil is in the details

- KDE's interpolate over areas where there are no samples, so they correct for gaps to some extent.
- Histogram approach, fast, but sensitive to bandwidth

 Kernel approach, slow and tedious need to integrate all kernels at every point of evaluation, most heuristics sensitive to noise

Hybrid Method for Density Estimation

- We take a hybrid method for density estimation.
- Use the speed of histogram and the smoothness of Kernels:
 - 1. Build a histogram of the initial data
 - 2. Obtain a good estimate of the bandwidth
 - 3. Smooth the histogram using the bandwidth.

• Goal:
$$\hat{f}_h(x) = \frac{1}{nh\sqrt{2\rho}} \mathop{a}\limits_{i=1}^n e^{-\frac{h^2(x-x_i)^2}{2}}$$

Botev et.al., Annals of Statistic, 2010

Connection to heat equation

- Heat Equation: $\frac{\partial f}{\partial t} = \frac{1}{2} \frac{\partial^2 f}{\partial x^2}$, with initial condition: f(x,0) = D
- It governs the distribution of temperature in a region over time.

A Gaussian kernel,
$$\hat{f}_h(x) = \frac{1}{nh\sqrt{2\rho}} \bigotimes_{i=1}^n e^{-\frac{h^2(x-x_i)^2}{2}}$$
 (which is what we want) is the unique solution to the above equation!

"Spreading of Heat" over time akin to Smoothing Data

- At t = 0, the initial condition is a delta peak at 0. For any t>0, we get a Gaussian.
- In finite domain, the solution to heat equation is a Fourier series in cosine

$$f(x) = \mathop{\bigotimes}_{m=0}^{\underbrace{4}{\circ}} a_m \cos(m\rho x) \exp \mathop{\bigotimes}_{e}^{\underbrace{2}{\circ}} \frac{-m^2 \rho^2 t}{2} \mathop{\bigotimes}_{\emptyset}^{\ddot{0}}$$

- Motivates us to work in frequency domain.
 - => Solution = Discrete Cosine
 - -Transforms
- Facilitates rapid computation

Computing in frequency domain

Smoothing in action: increasing the diffusion

Diffusion KDE

DREVI (Diffusion Estimate)

DREVI (Hall Estimate)

Diffusion-based KDE estimate is faster and smoother Botev, et al., Annals of Stats, 2011

Reconfiguring Signaling Edges Driving EMT

Smita Krishnaswamy Roshan Sharma Nevana Zivanovic Bernd Bodenmiller

Epithelial-mesenchymal transition (EMT)

Epithelial

Mesenchymal

Induce EMT by treating a breast cancer cell line with TGFB

EMT: State Change in Cells

 Cellular heterogeneity: both epithelial and mesenchymal cells coexist during transition.

A trajectory approach to development

- Single cell studies are finding that sometimes development is a continuous progression
- Strong signal in the data, simple methods get rough approximation, but hard to get accurate progression.

The Challenge: Non-Linearity

- Development is highly non-linear in n-D space
- Euclidian distance is a poor measure for chronological distance

Wanderlust Approach

- Convert data to a k nearest neighbors graph
 - Each cell is a node
 - Each cell only "sees" its local neighborhood

Bendall*, Davis*, Amir* et.al. Cell 2014

Derive Trajectory using "graph walk"

- What is the position of a cell along the trajectory?
 - Start from an early cell
 - Define distance by walking along graph
- But, very noisy data, many additional tricks needed.

Wanderlust

A graph based trajectory detection algorithm. Wanderlust is scalable, robust and resistant to noise

We use randomness to overcome noise!

- 1. Convert data into a set of kINN graphs
- 2. In each graph, iteratively refine a trajectory using a set of random waypoints
- 3. The solution trajectory is the average over all graph trajectories

Refine distances using waypoints

Choose M random waypoints, $I_1...I_M$

Refine distances using waypoints

Refine distances using waypoints

kINN graph

- kINN: k-out-of-l nearest neighbors
- Generate I nearest neighbors graph

Each shortcut appears in only a small number of kINN-graphs

Wanderlust Trajectory

- Wanderlust infers path from Hematopoietic Stem Cells to immature B cells from a single sample of human bone marrow.
- Matches prior knowledge, robust and reproducible across 7 individuals.
- Identified and validated 3 novel rare progenitor states (0.007% of cells)

Acknowledgements

Smita Krishnaswamy Roshan Sharma

David van Dijk

Ambrose Carr

Linas Mazutis

Josh Nainys

Oren Litvin

El-ad David Amir

Michelle Tadmor

Jacob Levine

Manu Setty

Bodenmiller Lab (U Zurich) Bernd Bodenmiller Nevana Zivanovic

Nolan Lab (Stanford) Garry Nolan Sean Bendall Matt Spitzer Kara Davis Erin Simons Tiffany Chen

