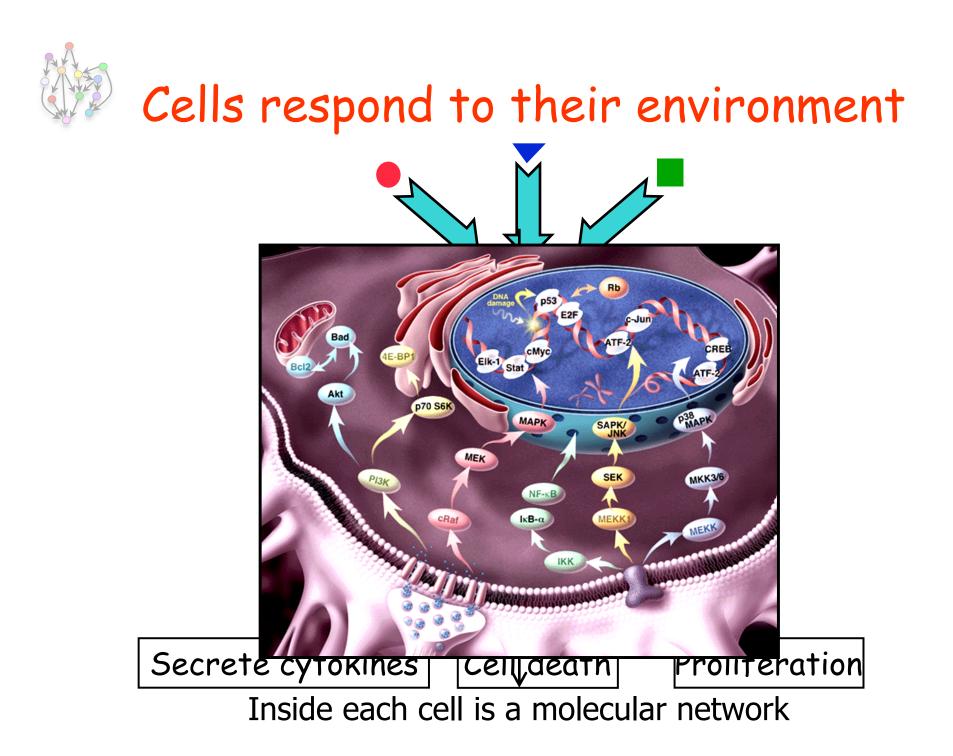
Causal learning of biomolecular networks

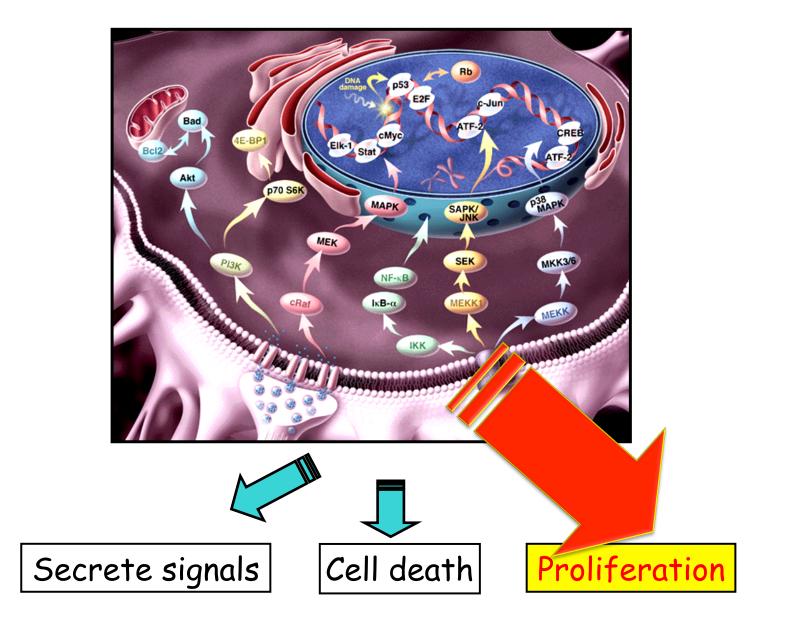


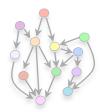
Karen Sachs

Stanford University

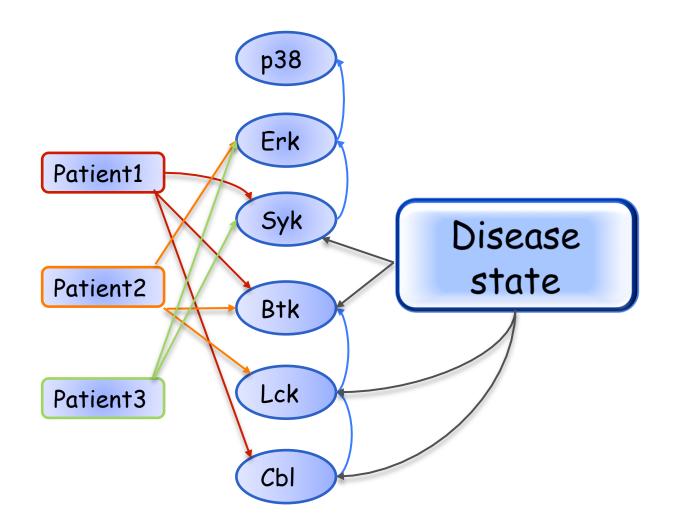


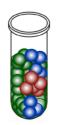
...which breaks down in disease states





Motive: Characterize normal, disease, drug..

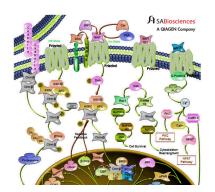




Where does data come from?

Technology

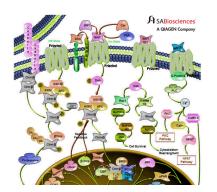
Where does data come from?



What causal connections appear?

- What happens?
- What can we see?

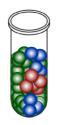
Where does data come from?



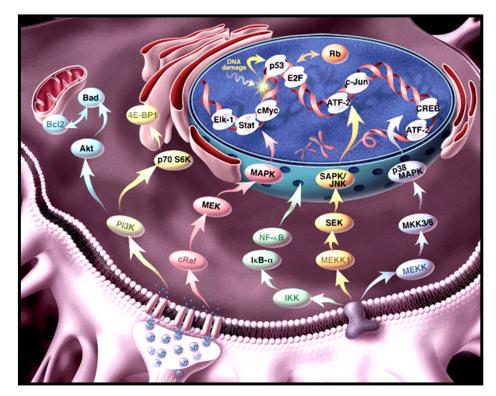
What causal connections appear?

What is needed for causal learning?

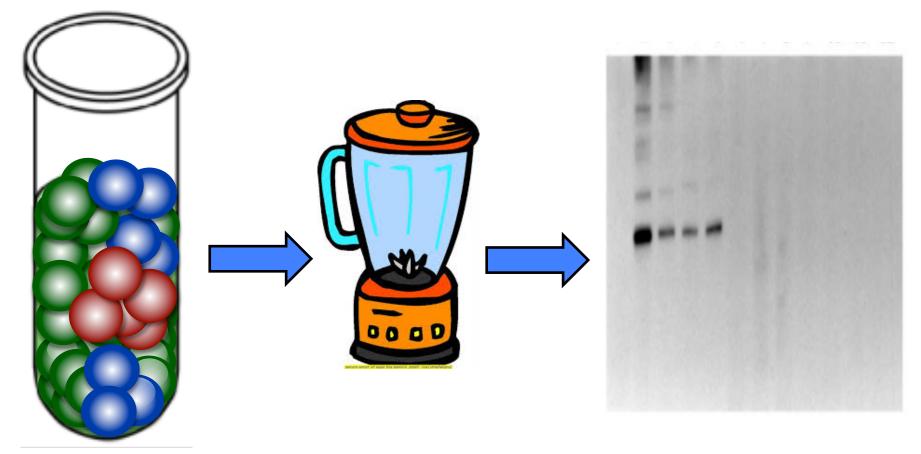
• Outstanding challenges



1. Where does data come from?



Samples are blended routinely



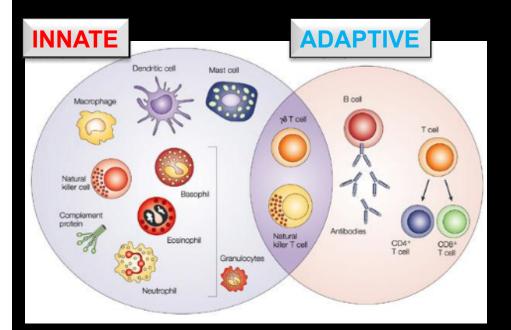
Tumor sample

Lab Blender!

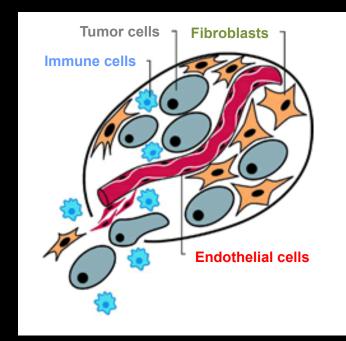
Biological measurements

Why single cell? (Biology perspective)

Innate and adaptive branches of the Immune system communicate with each other to mount an effective immune response



Cancer is a complex **system** with defined interdependent compartments

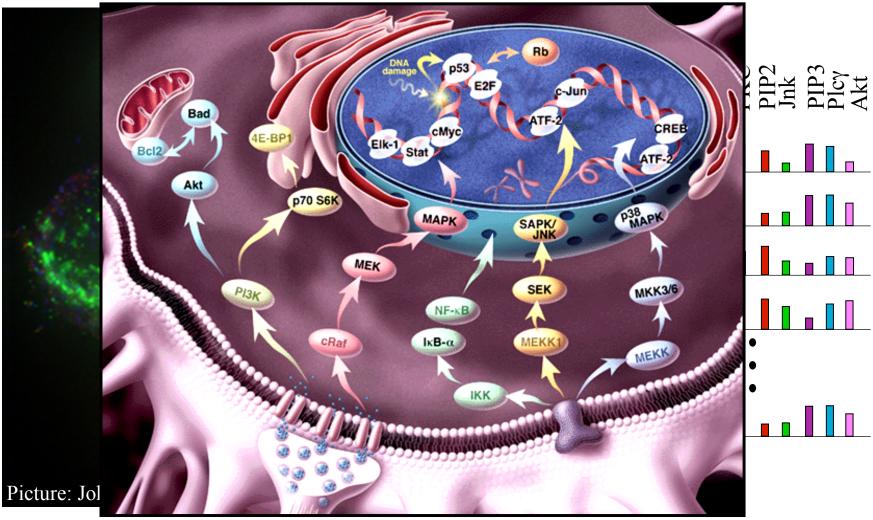


Why single cell? (Stats perspective)

		X1	X2	X3		Хр	
	Cell1	120				77	,
	•	19				98	
	•	33				3	
		90				40	
	Celln	12				34	

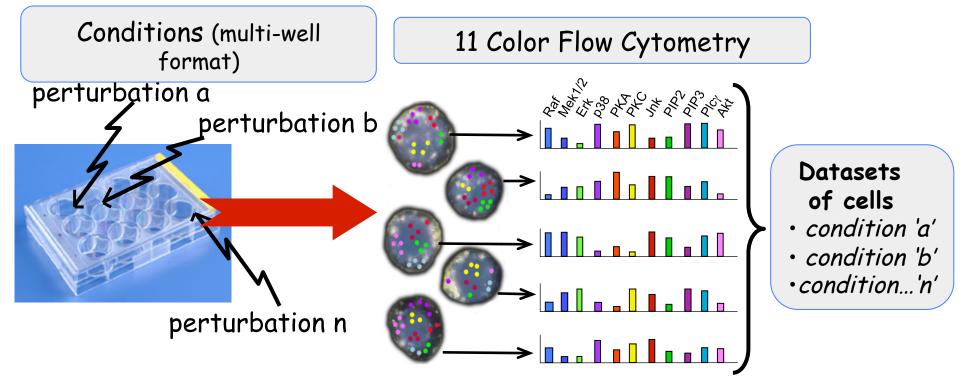
High throughput data

From Phospho-molecular profiling to Signaling pathways

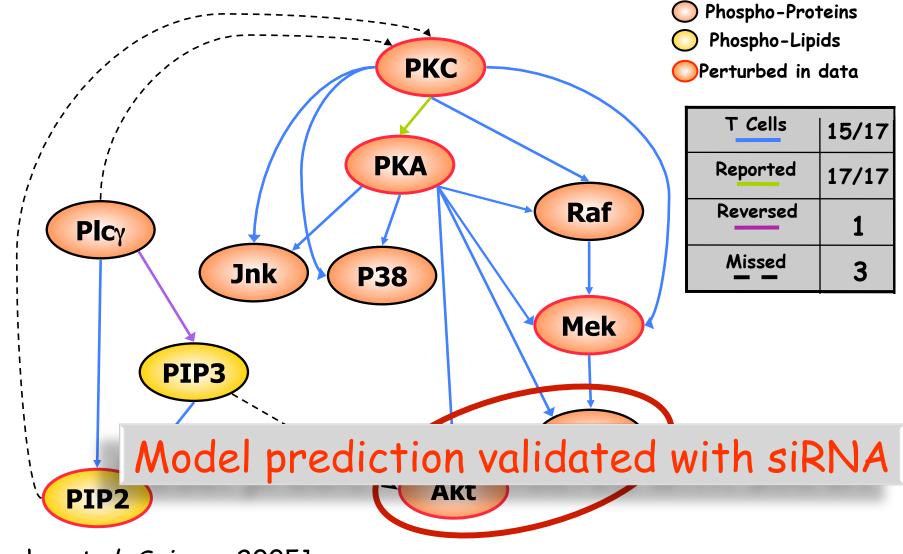


Hsiightling Pathuradata

T-Lymphocyte Data



- Primary human T-Cells
- 9 conditions
 - (6 Specific interventions)
- 9 phosphoproteins, 2 phospolipids
- 600 cells per condition
 - 5400 data-points



[Sachs et al, Science 2005]

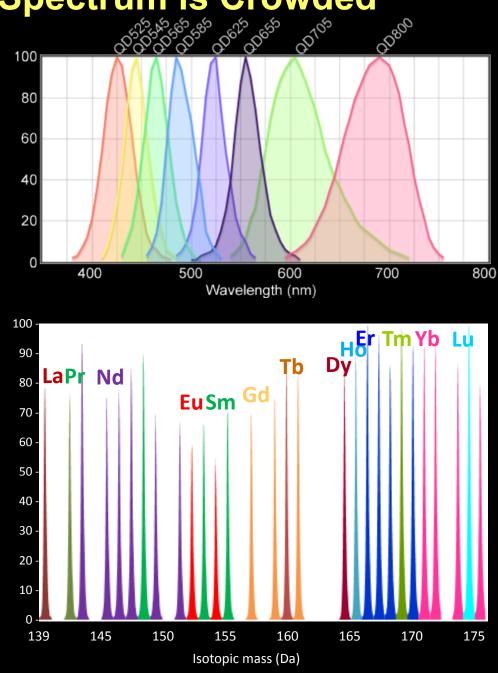
The Fluorescence Spectrum is Crowded

Fluorescent cytometry

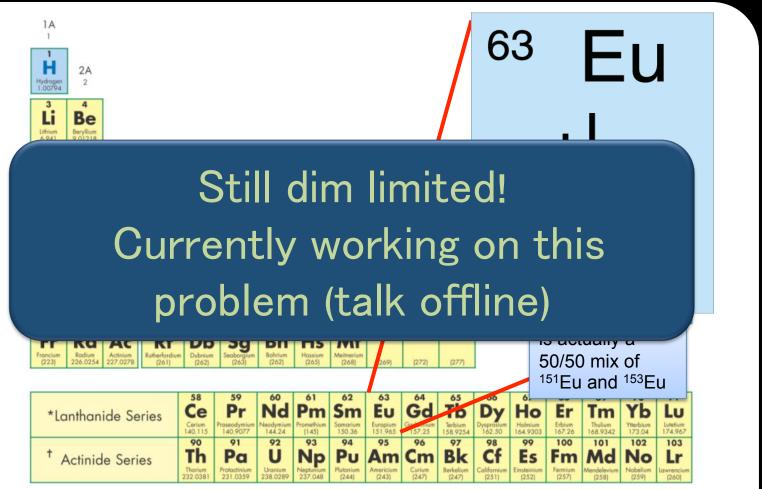
- 6-8 parameters is "routine"
- 17 parameters has been reported
- Autofluorescence
- High background

Mass cytometry

- 100 discrete mass channels
- 38 parameters easily (58 soon)
- No compensation required
- Zero background

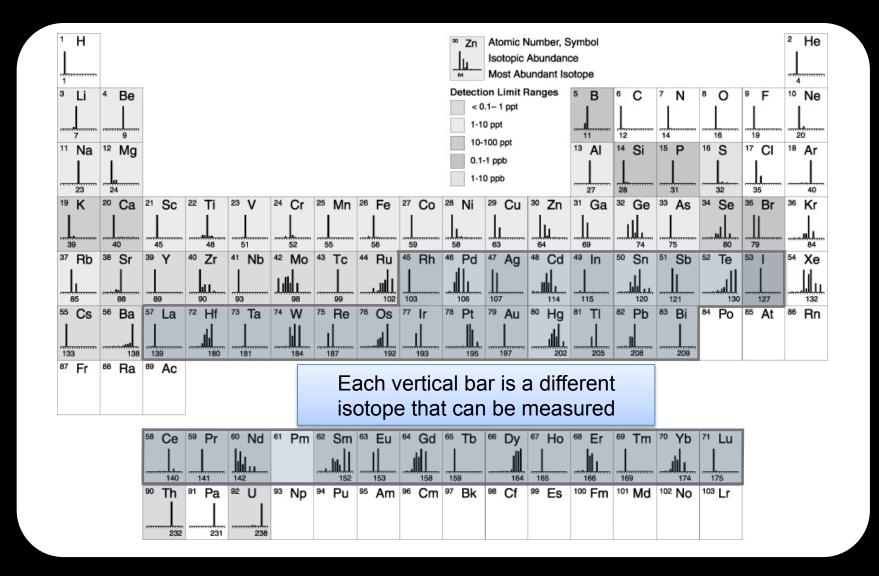


Antibody labels: isotopes of elements

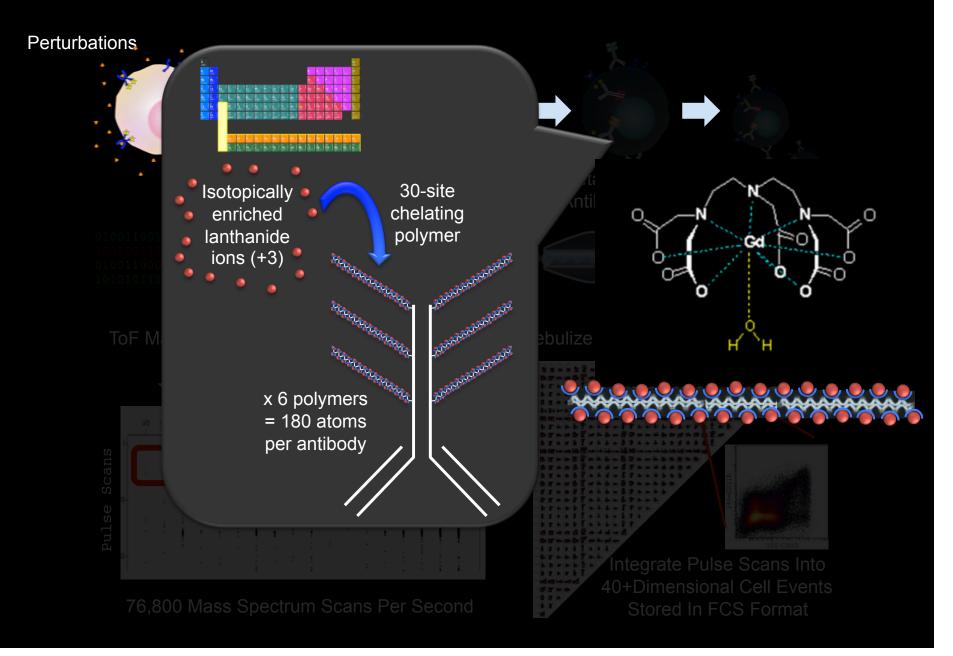


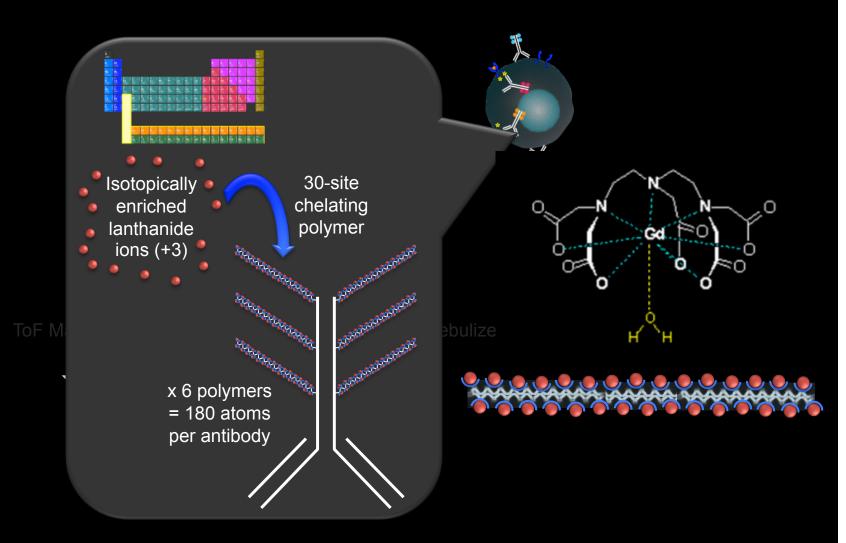
Central Washington University © 1998

How Do You Get 100 Channels From 35 Elements?

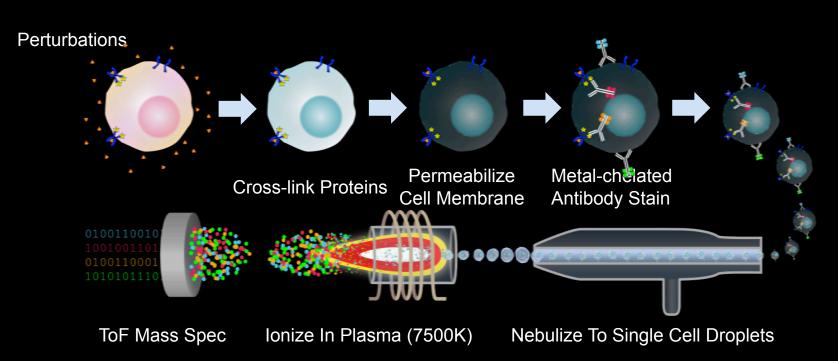


45-dimensional Single Cell Mass Cytometry

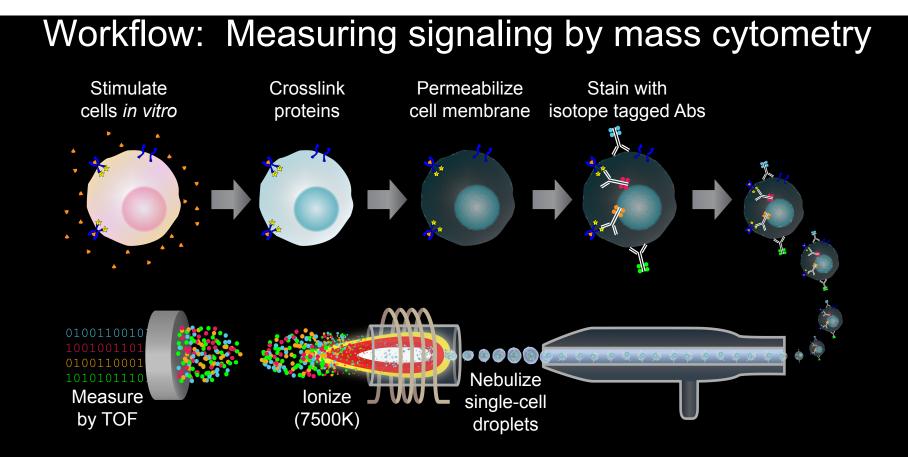


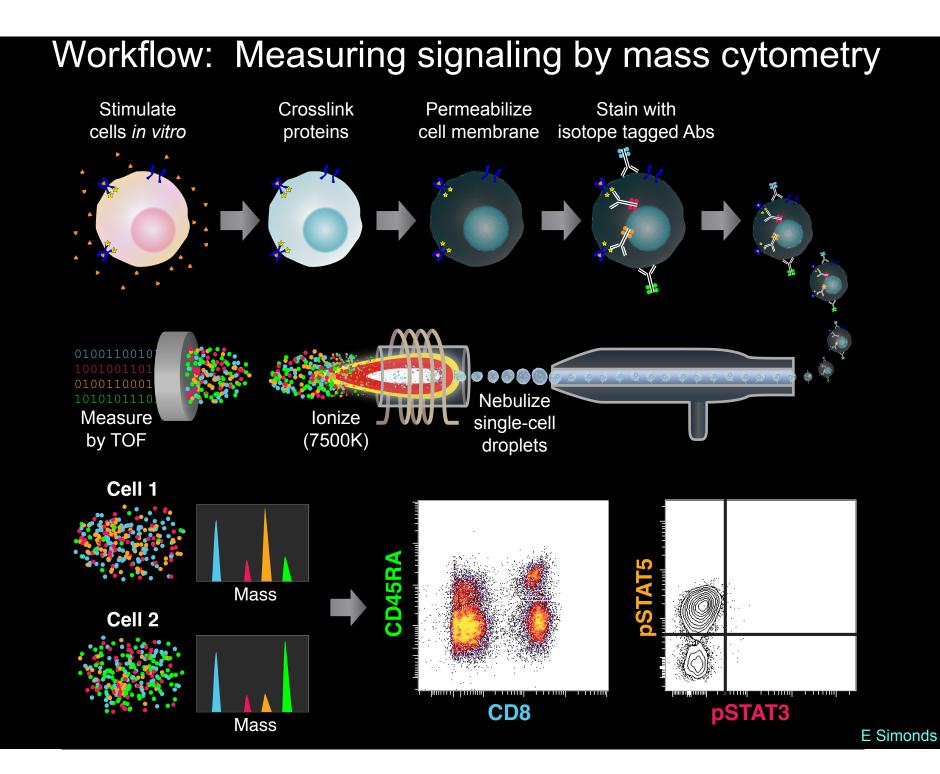


Workflow

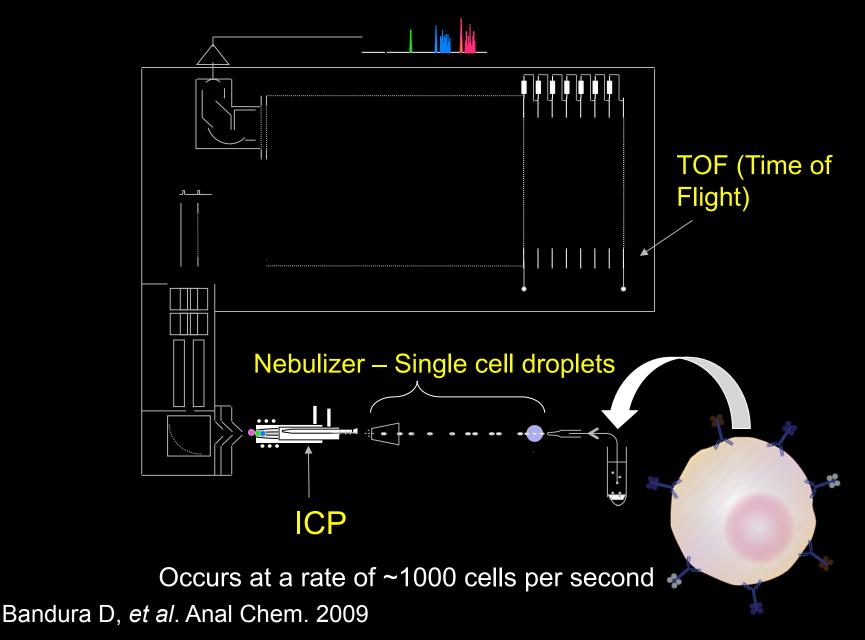


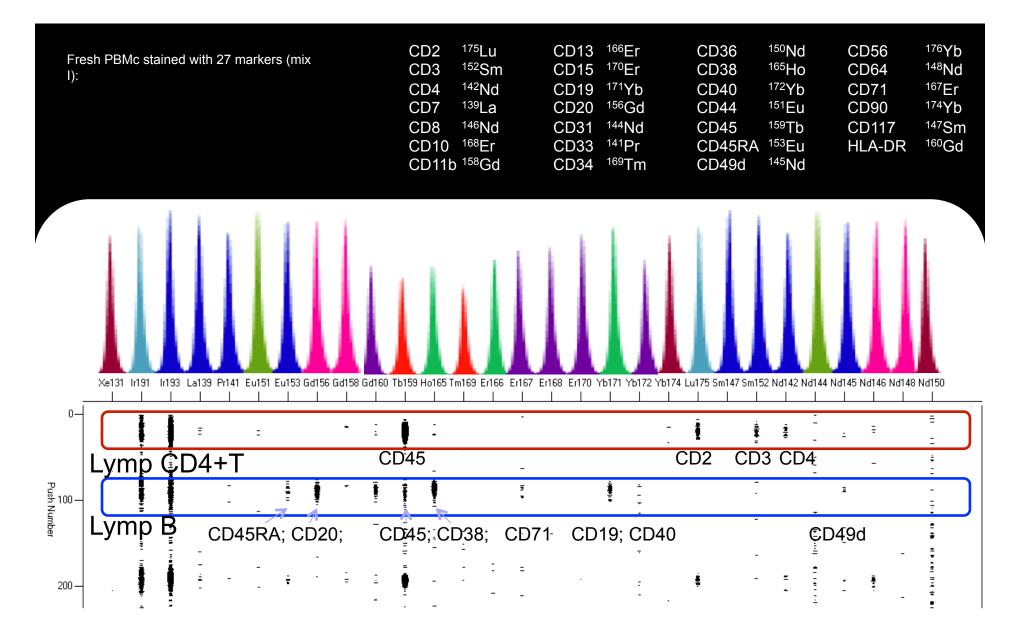
Workflow: Measuring signaling by mass cytometry Stimulate cells in vitro Crosslink proteins Permeabilize cell membrane Stain with isotope tagged Abs Image: Comparison of the protein of the pro



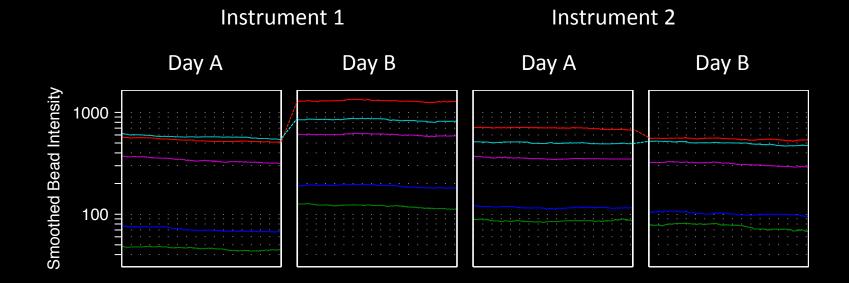


CyTOF: A prototype schematic

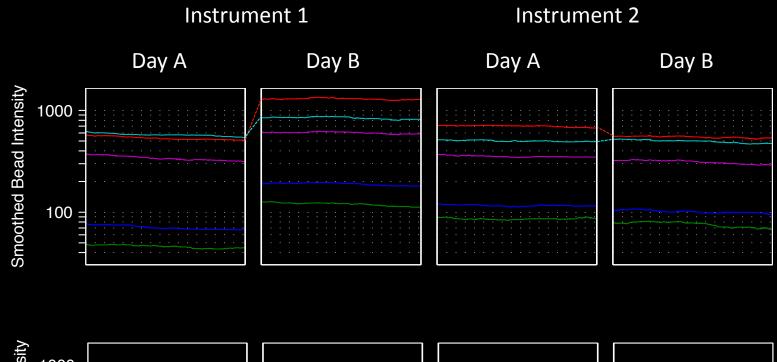


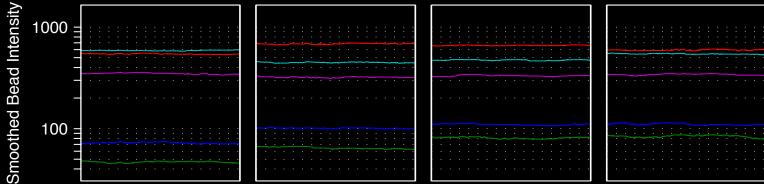


Variation Across Calibrations and Instruments

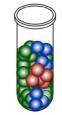


Bead normalization tames variation

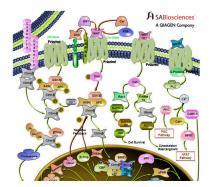




time



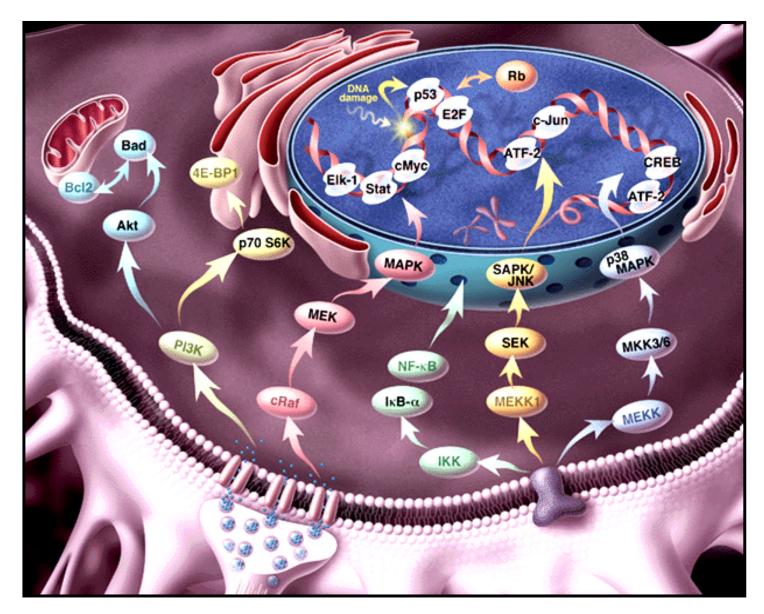
1. Where does data come from?



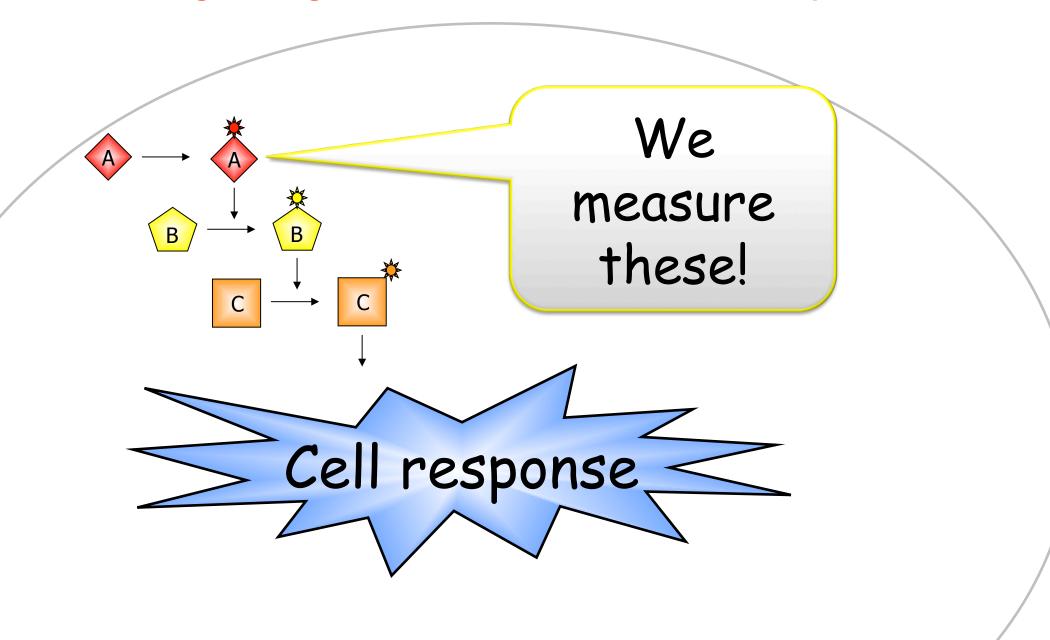
2. What causal connections appear?

- What happens?
- What can we see?

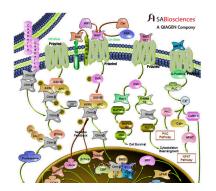
Signaling 101



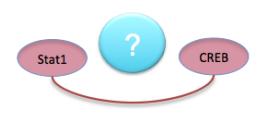
Signaling 101: Measure activated species



Where does data come from?

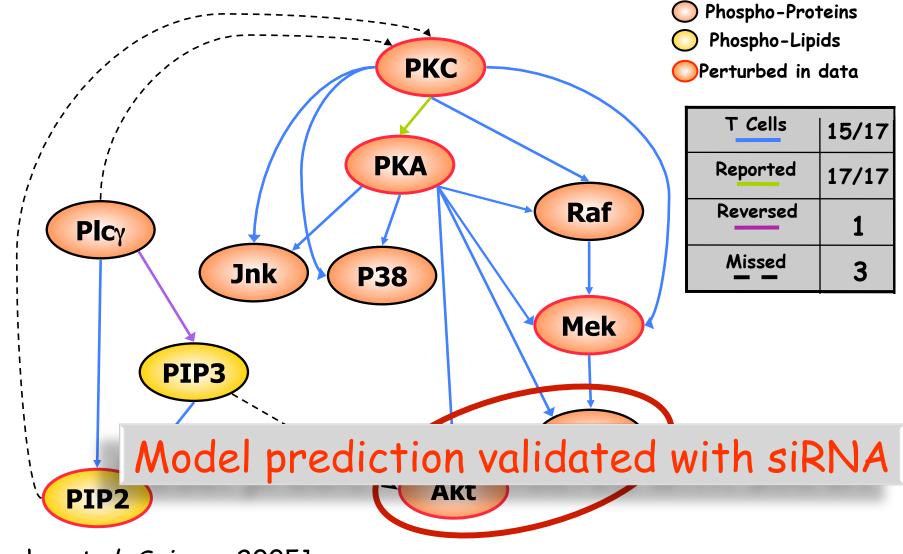


What causal connections appear?

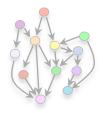


What is needed for causal learning?

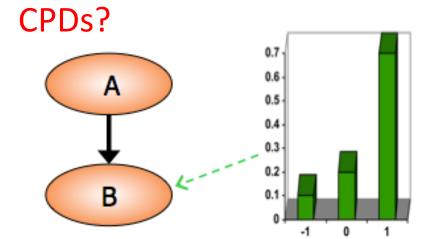
• Outstanding challenges



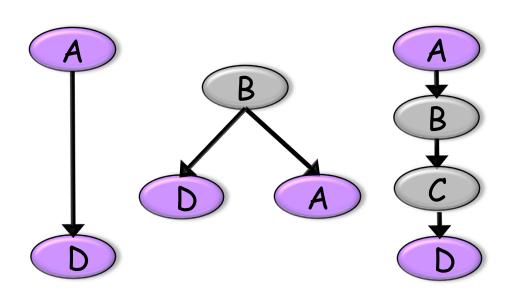
[Sachs et al, Science 2005]



Wait! What about..

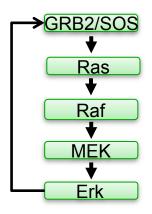


• Hidden variables?

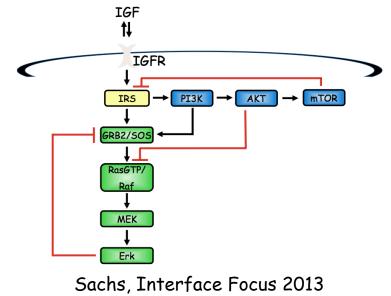


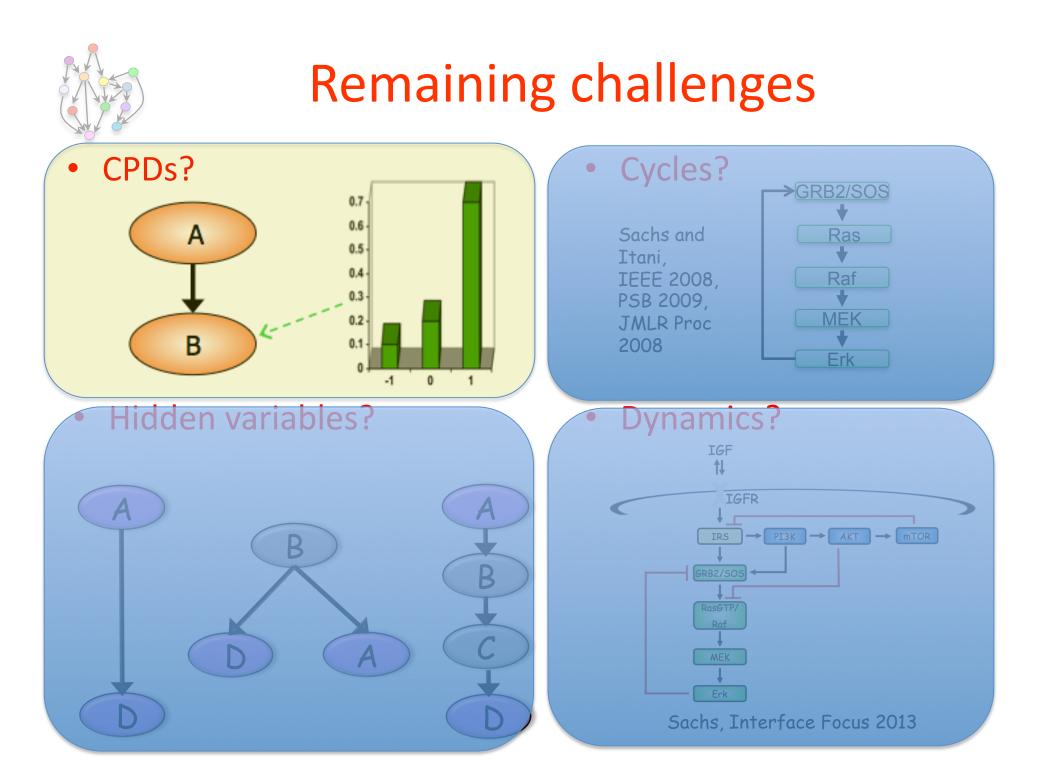
• Cycles?

Sachs and Itani, IEEE 2008, PSB 2009, JMLR Proc 2008

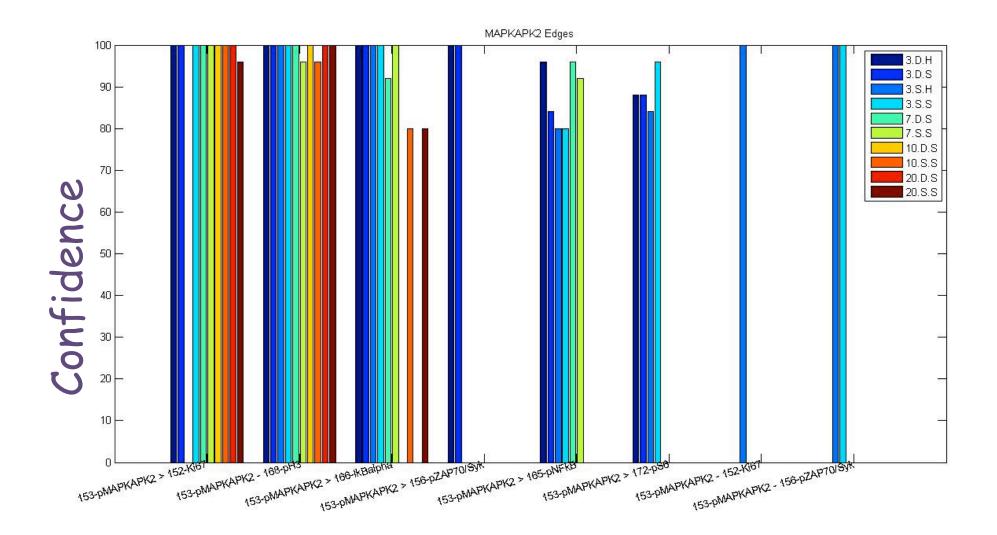


• Dynamics?

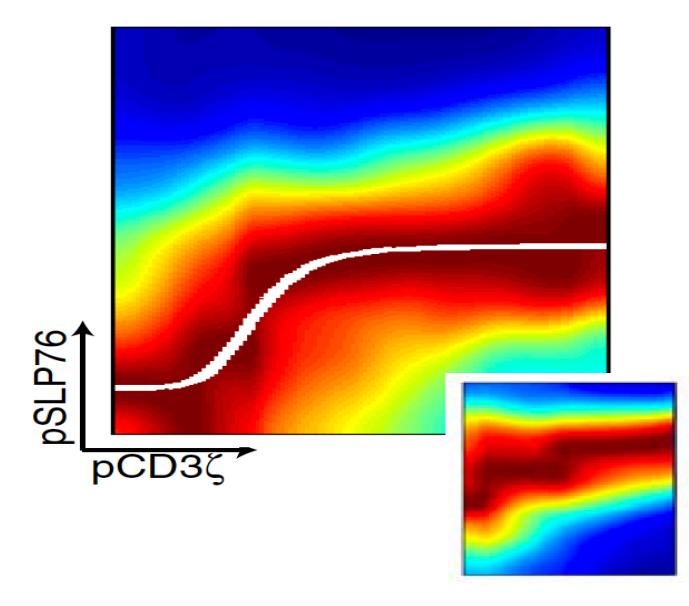




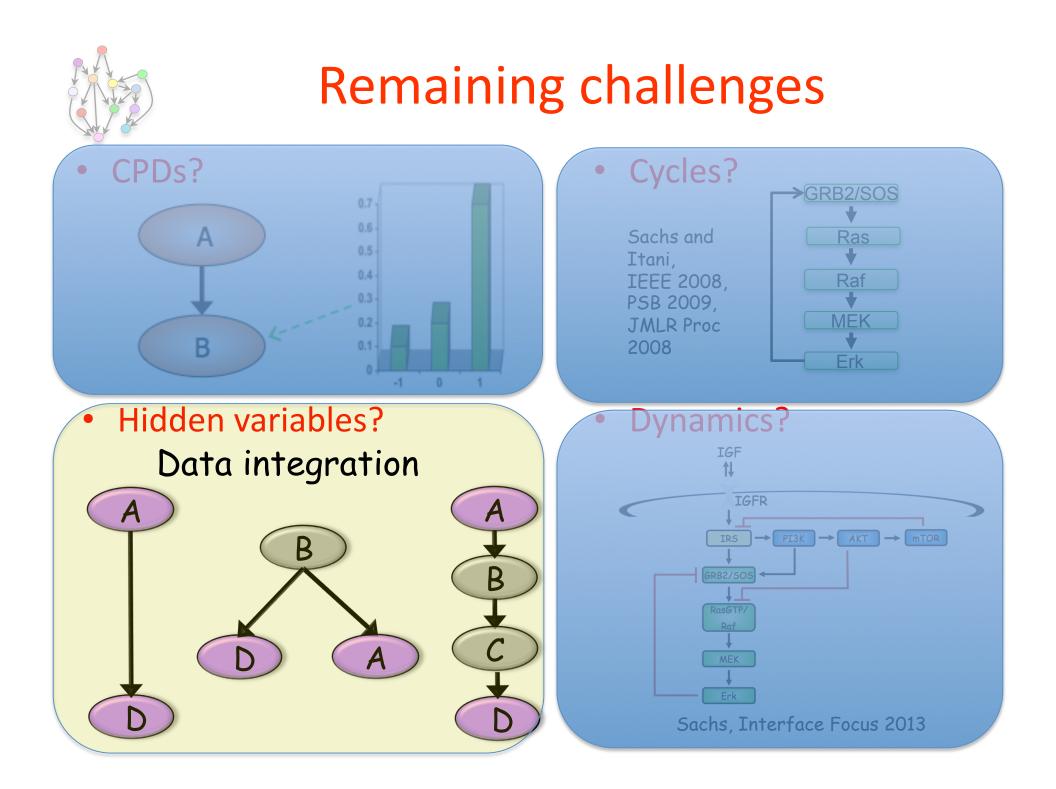
Edges can be CPD dependent

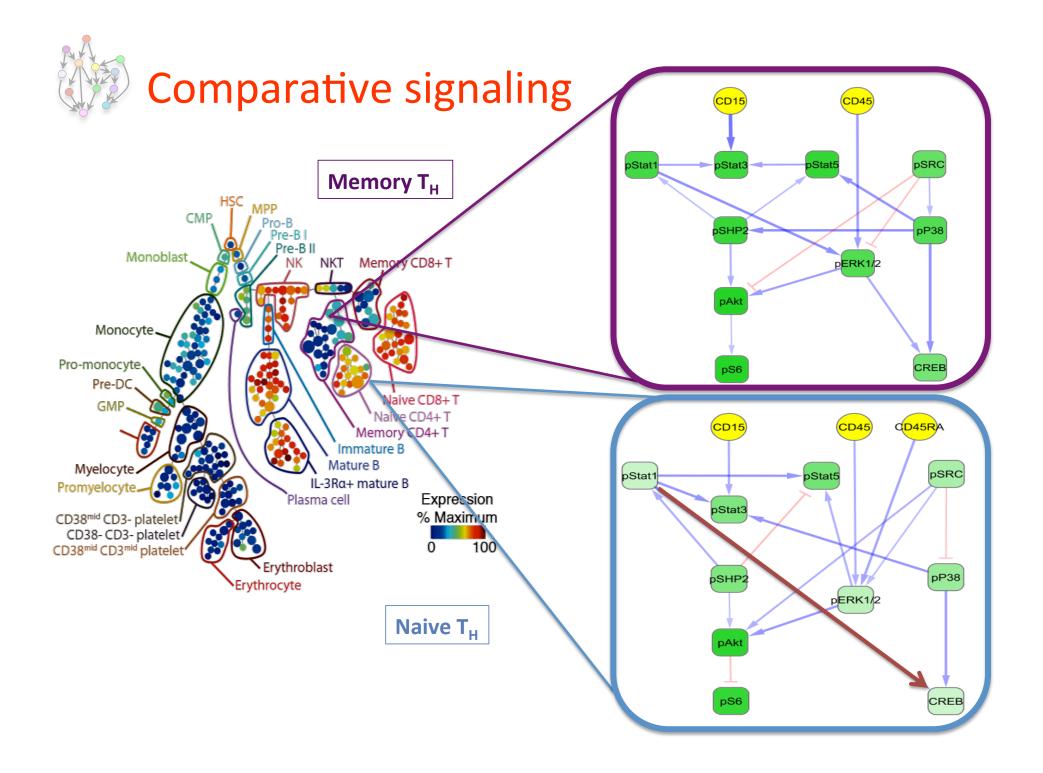


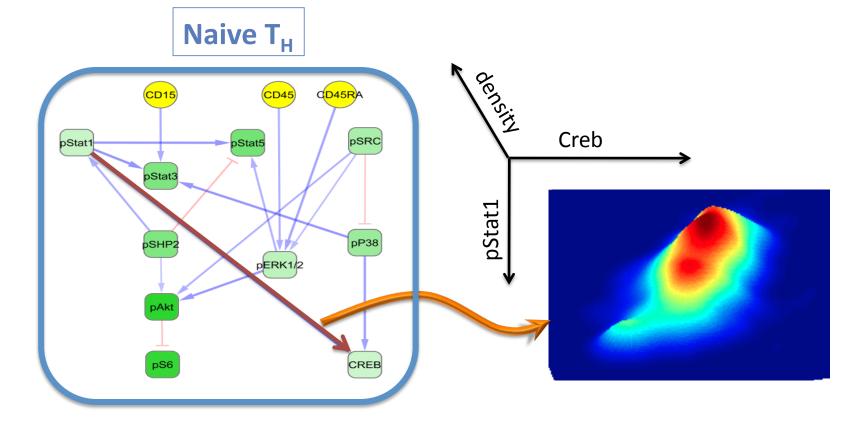
CPDs need expressive power



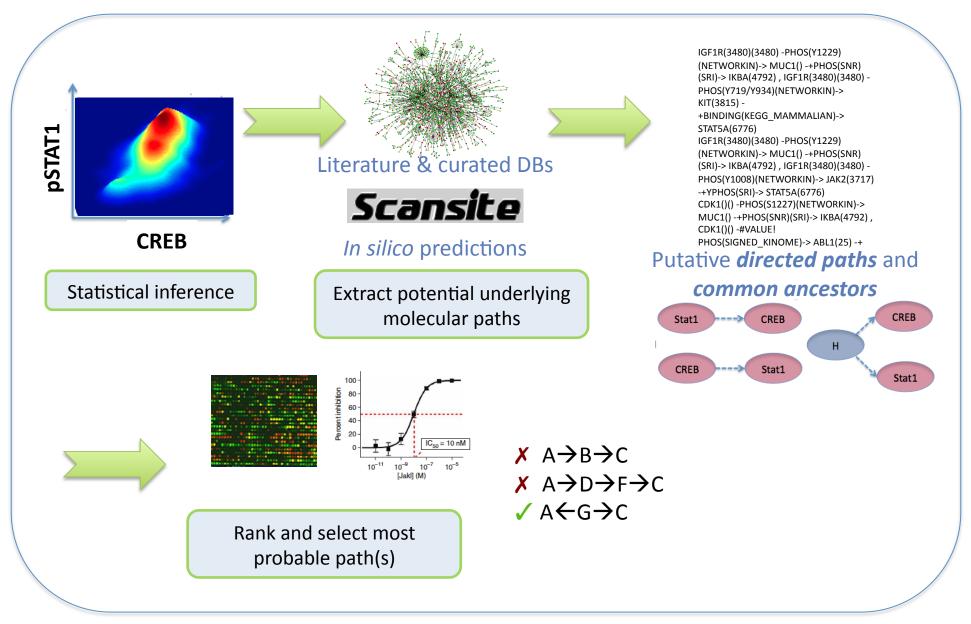
Multinomial?
Linear?
Other?
GP (J. Mooij)



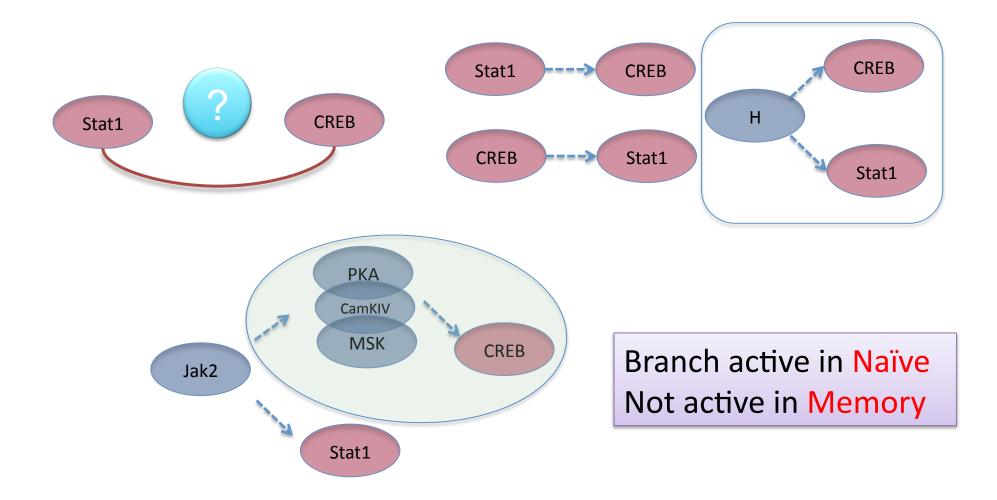


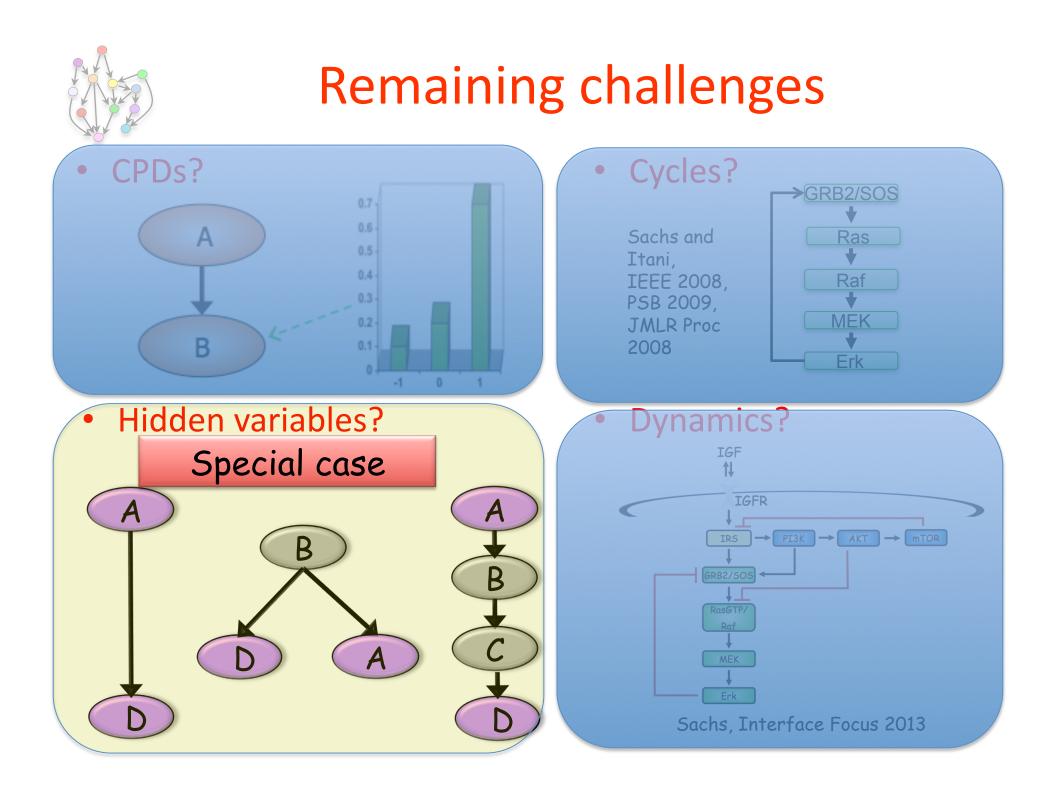


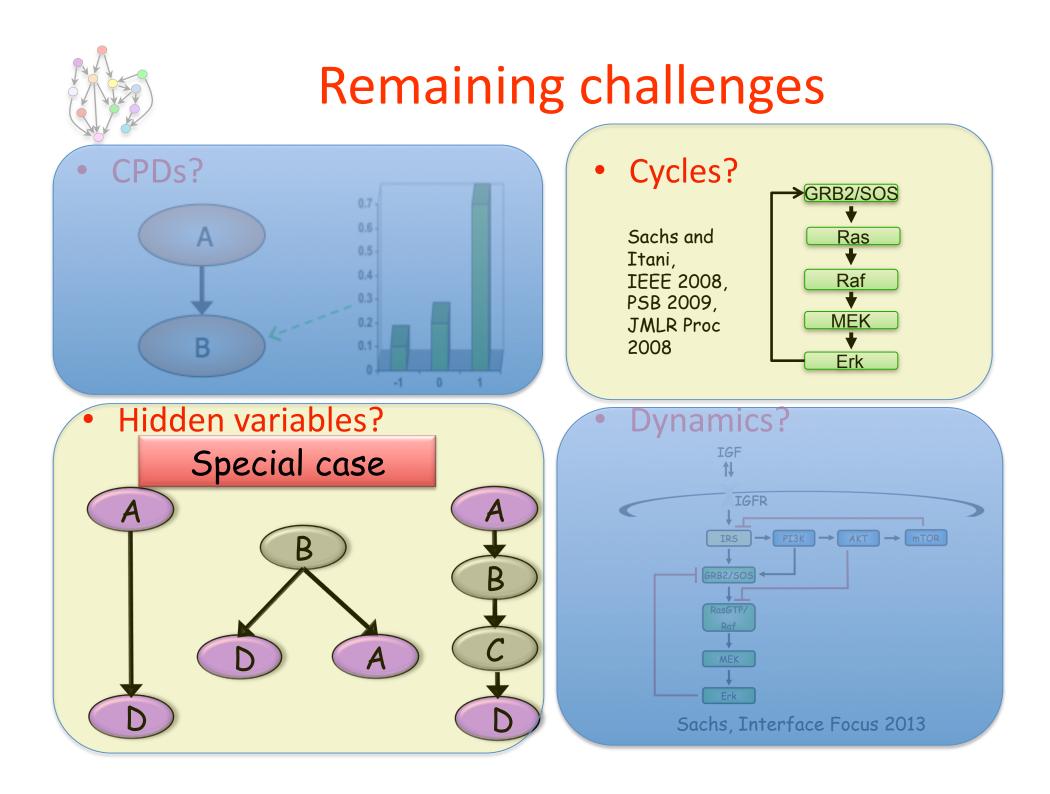
Workflow for adding hidden variables



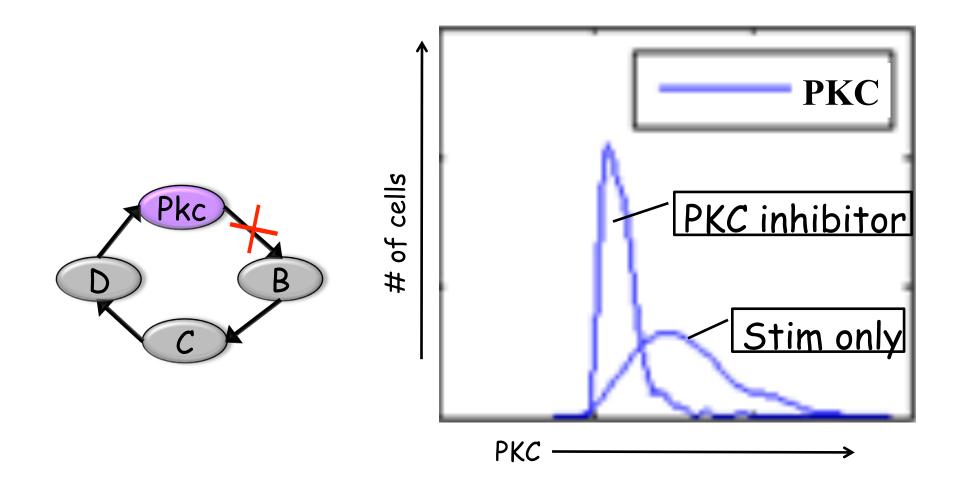
Uncovering underlying path





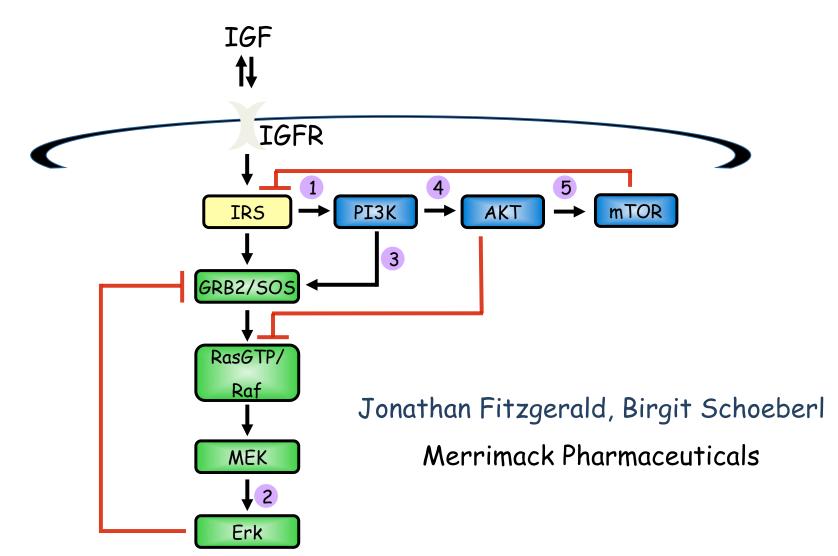


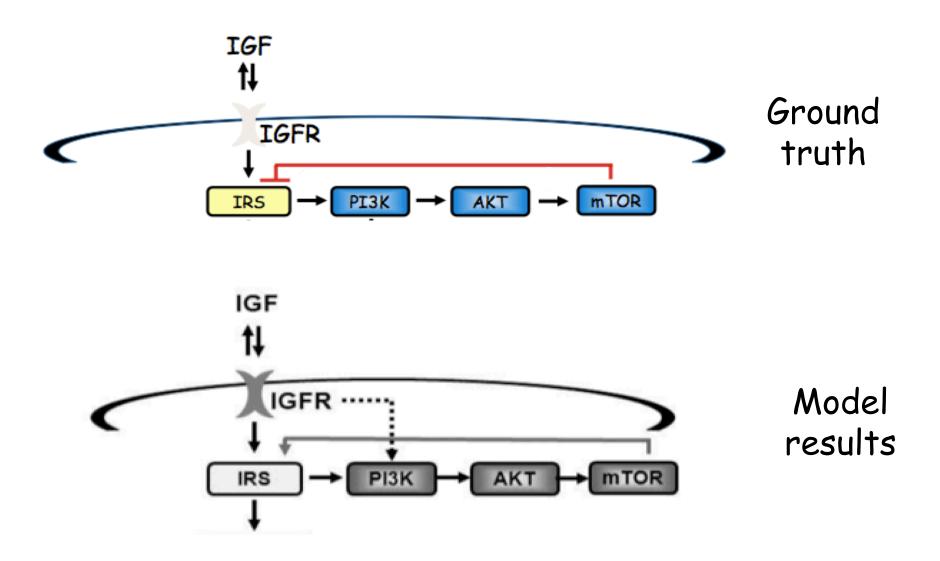
Cyclic structure learning

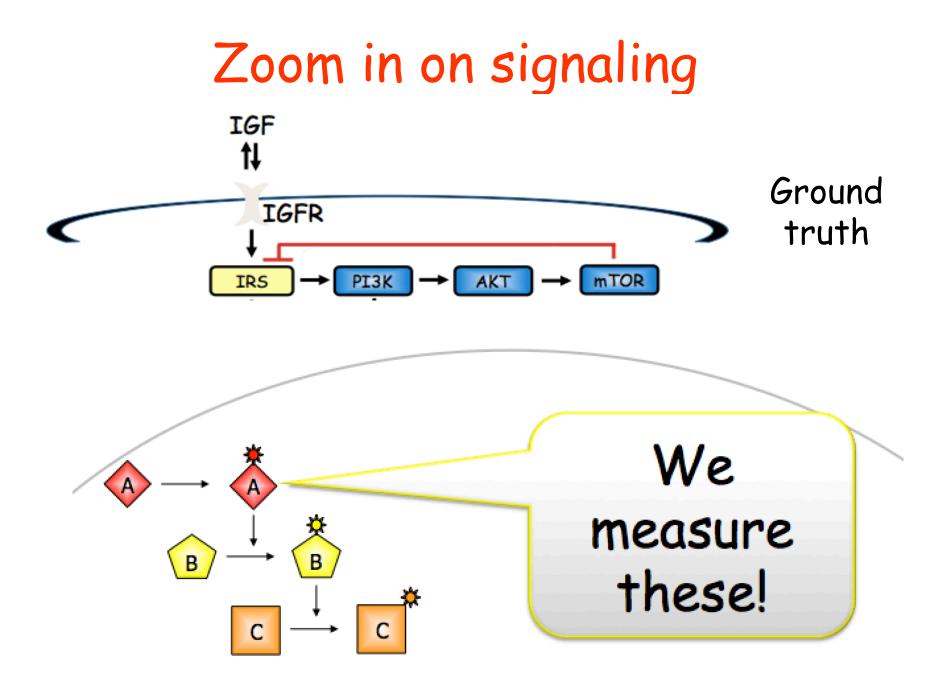


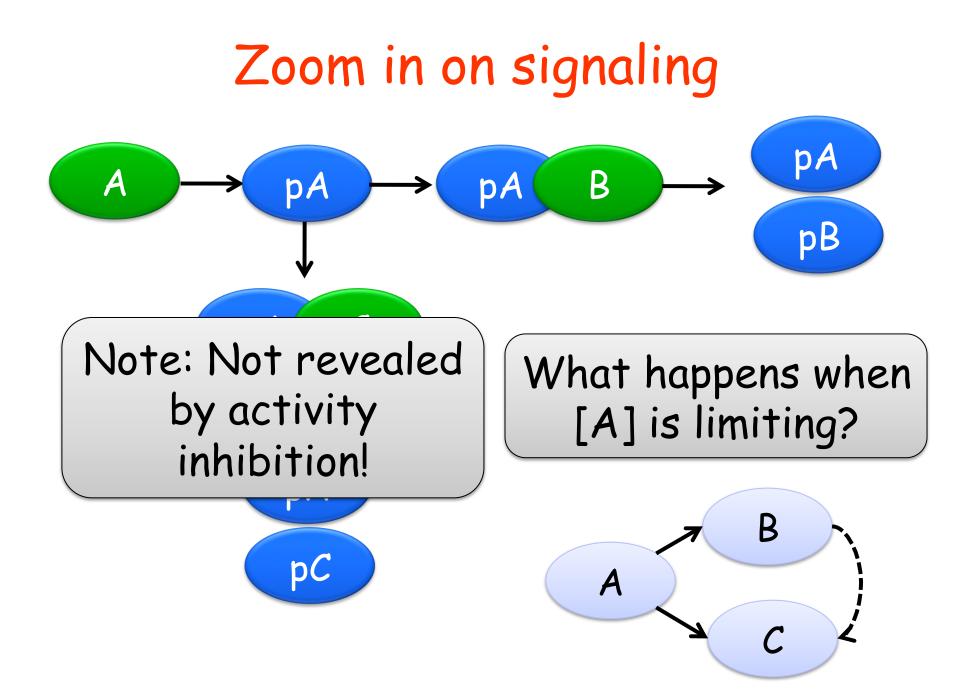
Itani and Sachs et al, JMLR Proc 2008

ODE model for realistic synthetic data

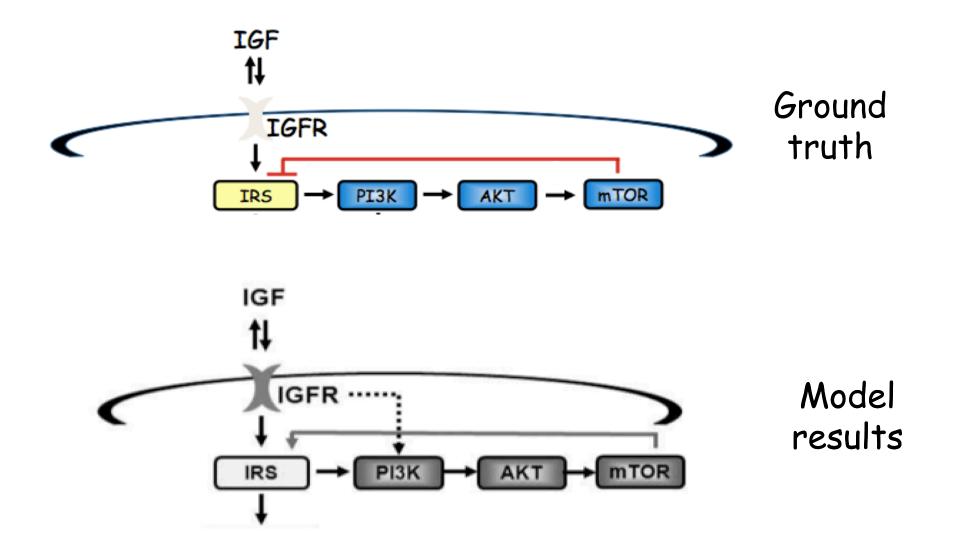


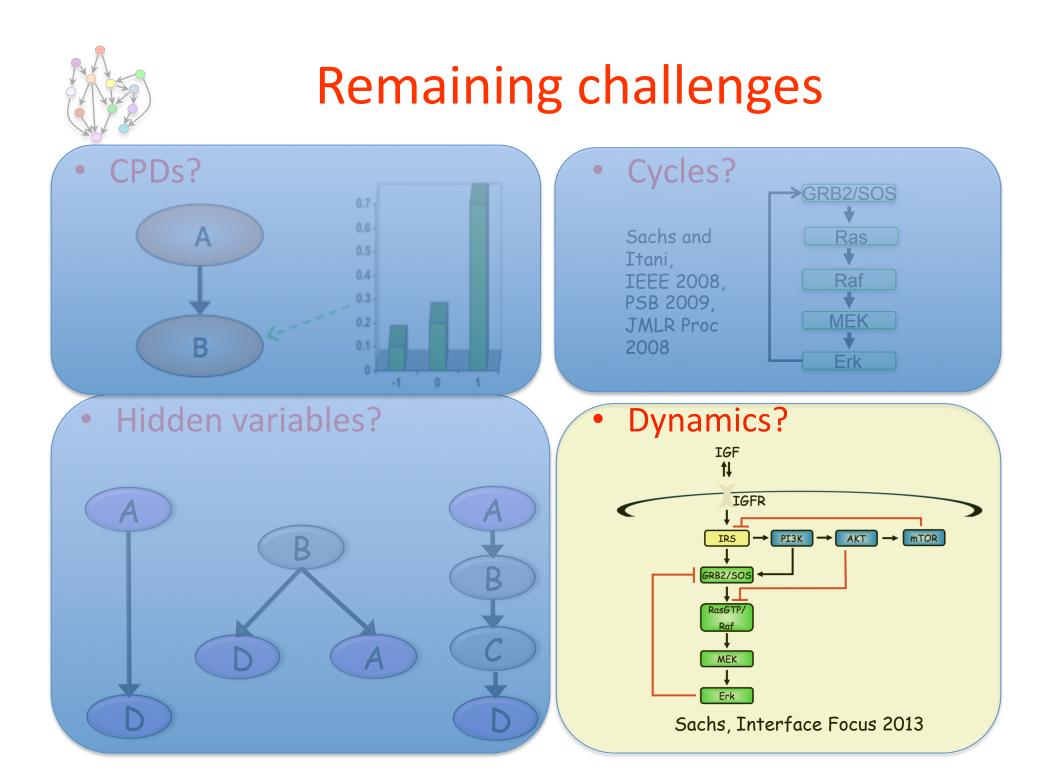




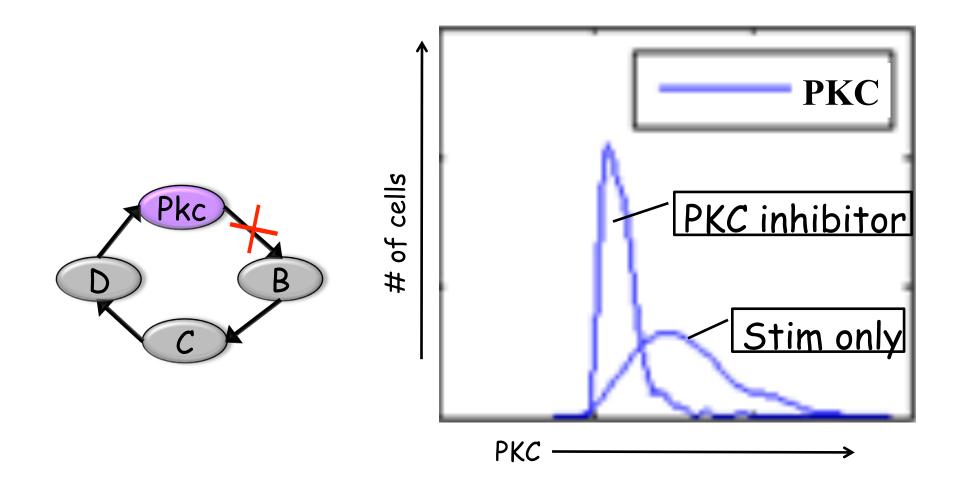


Extra edge: causal via competition





Cyclic structure learning



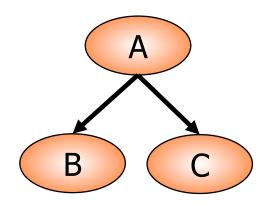
Itani and Sachs et al, JMLR Proc 2008

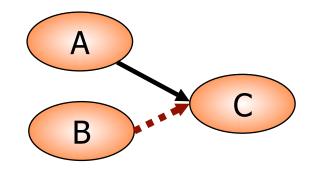
Dynamics can confound causality: Example

A(t) randomly reset to 0 or 1

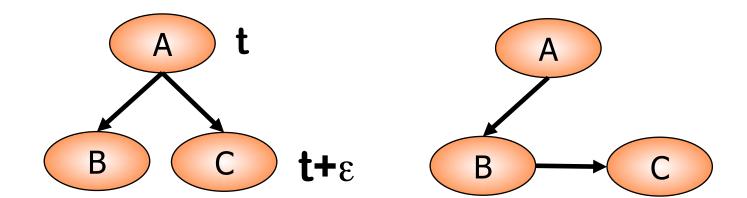
B=A(t-1),

 $C(t)=A(t) \lor A(t-1)$

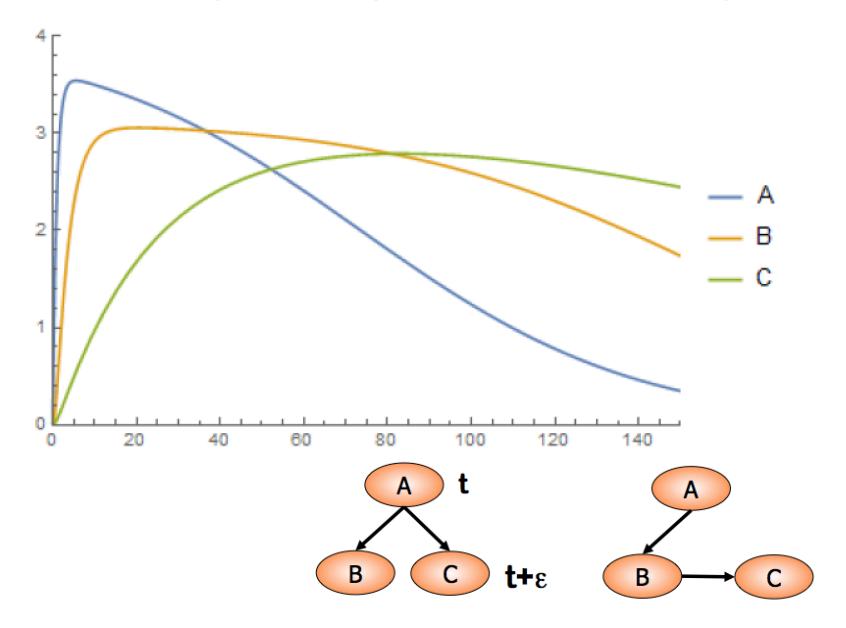


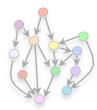


Bio Example

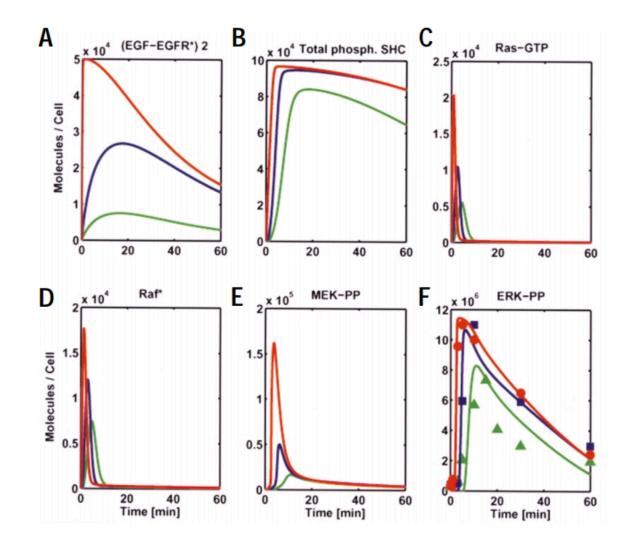


Bio Example: C depends on the *history* of A



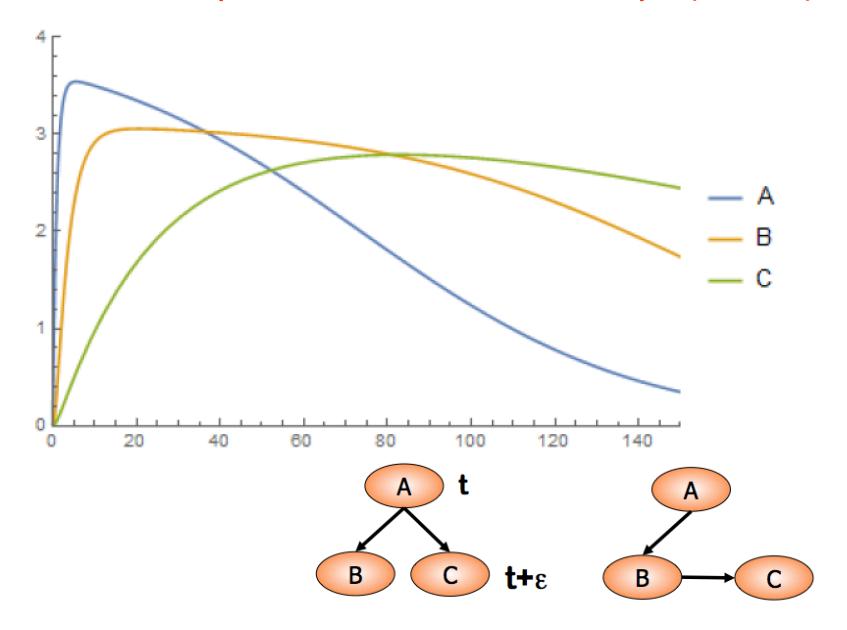


We are generally not in SS

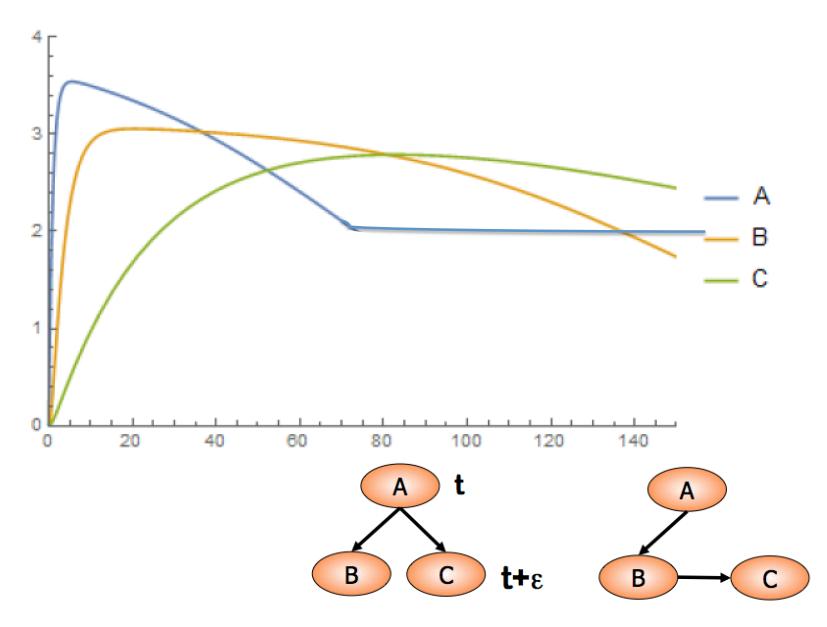


Schoeberl et al 2002

Avoid dependence on A's history? (How?)



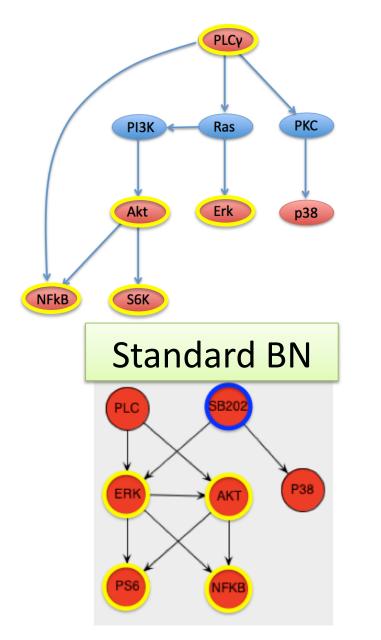
Hold A constant!

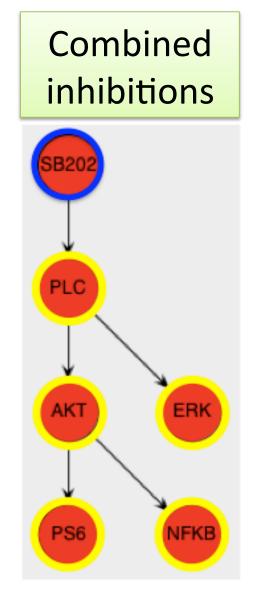


Algorithm for reducing noncausal edges

- Avoid dependence on history by learning from multi-inhibited conditions
- Some formalized results (see past talk)
- Continuing work based on feedback (work in progress)

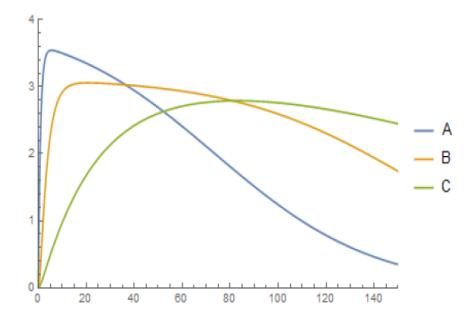
Reconstruction in T Cells





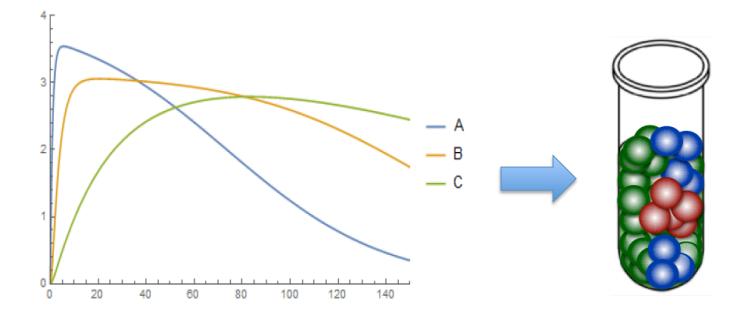
Other approaches?

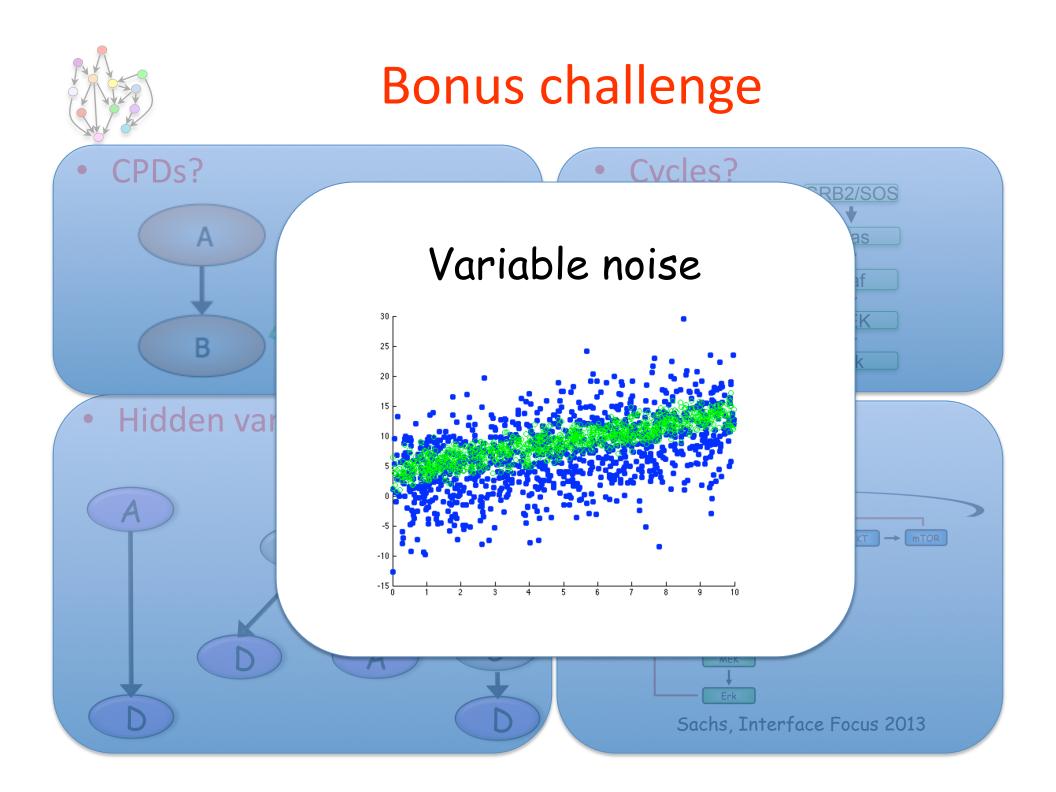
Other approaches?

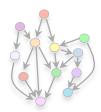


Other approaches?

How much fits into one snapshot?







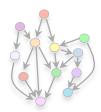
Bonus challenge: Variable noise

B has higher measurement noise



 $A \rightarrow B \rightarrow C$

Ground truth



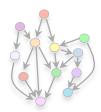
Bonus challenge: Variable noise

B has higher measurement noise



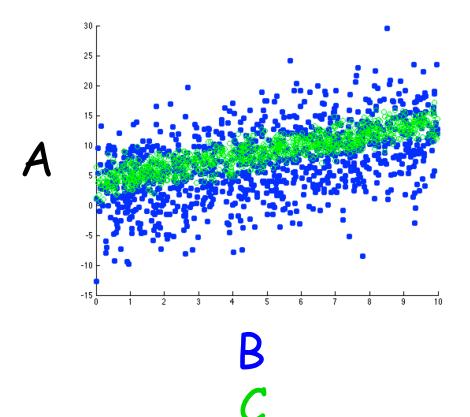
 $A \rightarrow B \rightarrow C$

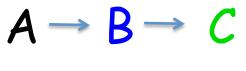
Ground truth



Bonus challenge: Variable noise

B has higher measurement noise





Ground truth

Learned model

Acknowledgements

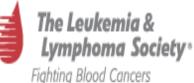
Team Stanford Tea Garry Nolan Wendy Fantl Tiffany Chen Tyler Burns Tim Lee Astraea Jager Peng Qiu Andrew Gentles Sean Bendall Sylvia Plevritis Erin Simonds Mingyu Chung

Team Berkeley, UMN, Merrimack, Harvard Mohammed AlQuraishi Birgit Schoeberl Jonathan Fitzgerald fel Solomon Itani tis Claire Tomlin

Zohar Sachs

Funding

LLS post doctoral fellowship



Thank you!

karensachs@stanford.edu

