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HETEROGENEOUS DATA SETS MEASURING THE SAME SYSTEM
UNDER STUDY

Variables | Thrombosis Contraceptives Protein C Breast Cancer Protein Y Protein Z
~,
g LA [
— S EAY ;
] oY gl o Sider!
Study K, 4 ('“5\9‘; N%g
Hogy 3 S
Yes 10.5 Yes
1 No Yes 5.3 No
observational data
No Yes 0.01 No
2 Yes 0.03 9.3
observational data No 3.4 22.2
No No 0 (Control) No 3.4
3 Yes No 0 (Control) Yes 2.2
experimental data Yes Yes 5.0 (Treat.) Yes 7.1
No Yes 5.0 (Treat.) No 8.9
No No (Ctrl)
e No No (Ctrl)
experimental data
Yes Yes(Treat)




ISOLATED ANALYSIS

Analyze data Publish results

2. ©

“...The use of contraceptives is correlated
with Thrombosis, negatively correlated with
Breast Cancer and levels of Protein E ...”

4

“...Protein E is a risk factor for Breast Cancer...”

“...Drugs reducing protein C reduced the
probability of Breast Cancer and lowered the
levels of Protein E...”

0

“...In the randomized control trial, women
taking contraceptives had 30% more chances
of being diagnosed with thrombosis ... ”

vV v Vv
vV v VvV W




INTEGRATIVE CAUSAL ANALYSIS

ﬁata can not be pooled \

together:

Missing variables cannot
be treated as missing
values.

They come from different
experimental/sampling
conditions (different

Qstributions). /




INTEGRATIVE CAUSAL ANALYSIS

ﬁata can not be pooled \

together:

Missing variables cannot
be treated as missing
values.

They come from different
experimental/sampling
conditions (different

Qstributions). /
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same causal
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INTEGRATIVE CAUSAL ANALYSIS
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SEMI MARKOV CAUSAL GRAPHS

Semi Markov Causal Graph G

X and Y share a
latent common cause

X directly causes Z ]

* Directed edges represent direct causal relationships.

* Bi-directed edges represent confounding (latent
confounders).

* Both types of edges allowed for a single pair of variables.
* No directed cycles (no causal feedback).




SEMI MARKOV CAUSAL GRAPHS

Semi Markov Causal Graph G

X and Y share a
latent common cause

X directly causes Z ]

* Directed edges represent direct causal relationships.

* Bi-directed edges represent confounding (latent
confounders).

* Both types of edges allowed for a single pair of variables.

* No directed cycles (no causal feedback).

Joint Probability Distribution P

X Y Yes No

Yes 0,01 0,04

No 0,01 0,04

0,000045 0,044955

2 2z = =
o o 2 e
<

No 0,000855 0,854145

* Joint probability distribution entails
conditional (in) dependencies.

- Ind(X,Y|2): P(X|Y,Z) = P(X|Z)
Dep(X,Y|2): P(X|Y,Z) # P(X|Z)




SEMI MARKOV CAUSAL GRAPHS

Semi Markov Causal Graph G

X and Y share a
latent common cause

X directly causes Z ]

Causal

assumptions

* Directed edges represent direct causal relationships.

* Bi-directed edges represent confounding (latent
confounders).

* Both types of edges allowed for a single pair of variables.
* No directed cycles (no causal feedback).

Joint Probability Distribution P

X Y Yes No

Yes 0,01 0,04

No 0,01 0,04

0,000045 0,044955

2 2z = =
o o 2 e
<

No 0,000855 0,854145

* Joint probability distribution entails
conditional (in) dependencies.

- Ind(X,Y|2): P(X|Y,Z) = P(X|Z)
Dep(X,Y|2): P(X|Y,Z) # P(X|Z)




CAUSAL ASSUMPTIONS

Causal Markov Assumption:
Every variable is independent of its non-effects
given its direct causes.
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CAUSAL ASSUMPTIONS

Ind(Y,Z |X)

Causal Markov Assumption:
Every variable is independent of its non-effects
given its direct causes.
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CAUSAL ASSUMPTIONS

Ind(Y,Z |X)

Causal Markov Assumption:
Every variable is independent of its non-effects
given its direct causes.

Causal Faithfulness Assumption:
Independences stem only from the causal structure,
not the parameterization of the distribution.
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CAUSAL ASSUMPTIONS

Ind(Y,Z |X)

Dep(Y,Z | ©)
Dep(X,Z | ©)
Dep(X,Z |Y)
Dep(Y,X | ©)
Dep(Y,X | Z)

Causal Markov Assumption:
Every variable is independent of its non-effects
given its direct causes.

Causal Faithfulness Assumption:
Independences stem only from the causal structure,
not the parameterization of the distribution.
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CAUSAL ASSUMPTIONS

Ind(Y,Z |X)

Dep(Y,Z | ©)
Dep(X,Z | ©)
Dep(X,Z |Y)
Dep(Y,X | ©)
Dep(Y,X | Z)

Causal Markov Assumption:
Every variable is independent of its non-effects
given its direct causes.

Causal Faithfulness Assumption:
Independences stem only from the causal structure,
not the parameterization of the distribution.

All independencies in the joint probability
distribution can be identified in G using the
graphical criterion of m-separation.

14



m-SEPARATION

A path X3, ..., X;, between X; and X,, is m-connecting given V if for every triple (X;_4, X;, X;+1) on the path:

IfX;_q *= X; «<* X; ;4 (colliding triplet),
X; or one of its descendants € V

e Otherwise, X; ¢ V

m-connecting path => information flow => dependence

No m-connecting path => no information flow =>independence (m-separation)

Colliders X;_; *— X; «* X;, 1 are special and create an asymmetry that will allow us to orient causal
direction.
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CAUSAL MODELLING

- -

Data set D Conditional
measuring a (in)dependencies
set of variables (expected) in the joint

probability distribution

Paths (m-
separations/connections)
in the causal graph

16



REVERSE ENGINEERING

A B C D E ?? G: 3 @ 3
ot
— ? ? (@)
? 2 ?
Data sgt D causal graph?
measuring a

set of variables
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REVERSE ENGINEERING

?7?
rr . E
A B C D E G: ? ? ?
y [ | o
? 2 ?
Data set D Find the (in)dependencies causal graph?
measuring a using statistical tests.

set of variables
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REVERSE ENGINEERING

Data set D Find the (in)dependencies Find a graph that satisfies
measuring a using statistical tests. the implied m-

set of variables connections/separations.

19



MARKOV EQUIVALENCE

* More than one graphs entail the same set of conditional independencies.
* The graphs have some common features (edges/orientations).
* For some types of causal graphs, Markov equivalence classes share the same

skeleton.
* not semi-Markov causal graphs

20



CAUSAL DISCOVERY

Lm0

Causal graph(s)

Data (In)dependencies paths

Sound and complete algorithms (e.g., FCI) take as input a data set and
output a summary of all the graphs that satisfy all identified
conditional independencies.
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INTEGRATIVE CAUSAL DISCOVERY

Gé@ O§G

Causal graph(s)
that
simultaneously

Data sets measuring
overlapping variable sets fit all data.
under

intervention/selection.
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INTEGRATIVE CAUSAL DISCOVERY

(&) (8)
N - I e'e o'e
© ©
Causal graph(s)
that
Data sets measuring simultaneously
overlapping variable sets fit all data.
under

intervention/selection.

Every data set imposes some constraints.

Observational data impose m-separation/m-connection constraints on the candidate graph.
Different variables?

Experimental data?

Data sampled under selection?

23



INTERVENTIONS (MANIPULATIONS)

TTTTTT Values of the manipulated variable are set solely

TT by the intervention procedure
ﬂ e.g. a randomized variable in a randomized control
Junkfood/ \ No Junk food trial.

1% 1T
T

l Heart disease l

45 LY
T4 1

24



INTERVENTIONS

Graph (SMCG) G « If you know the causal model, you can
model interventions.

* Values of B are set solely by the
intervention procedure: If you know
direct causal relations, remove all
edges into the manipulated variable.

e This procedure is called graph surgery.
* The resulting graph is called the
manipulated graph (symb. G?)

Manipulated SMCG G%
(after graph surgery)

25



CAUSAL DISCOVERY WITH INTERVENTIONS

GB:
A c D E
C) -
I

A m-connecting path from A to D given @ in G
A m-connecting path from A to D given B in G5

A m-connecting path from A to D givenB,C in G5

3 m-connecting path from B to C given® in G®

Dataset D; measuring a - Path constraints on the
. Conditional
subset of variables, some of . . causal graph after
. : independencies in D; . .
which are manipulated manipulation

26



SELECTION BIAS

TTT T T population
TTTTTTTT
tetirst X
| Sl Sl L

Sample
(internet
users)

levolution i creation

 Samples are selected based on the

value of one of your variables.

* e.g.you perform your study in a

specific region/on the internet; case-
control study for a rare disease.

27



SELECTION BIAS IN CAUSAL MODELS

Graph (SMCG) G * If you know the causal model, you can
model selection bias.

 Samples are selected based on the
value of D; The value of D directly
affects the probability of being
selected.

* S isachild of D, S=1 for all your
samples.
* Selected graph, symb. Gp,

Selection
variable

28



CAUSAL DISCOVERY WITH SELECTION BIAS

A B C E
A m-connecting path from A to D given @ in Gp
A m-connecting path from A to D given B in Gp
A m-connecting path from A to D givenB, C in Gp
3 m-connecting path from B to C given @ in Gp
Dataset D; measuring a Path constraints on the

Conditional

independencies in D; underlying causal graph

after selection

subset of variables, some of
which are selected upon

29



INTEGRATIVE CAUSAL DISCOVERY

“‘ﬂ v, = .0

Data (In)dependencies paths Causal graph(s)

* Every data set imposes some constraints.
* Observational data impose path constraints on the candidate graph.
* Experimental data impose path constraints on the candidate graph after manipulation.
* Data sampled under selection impose path constraints on the candidate graph after selection.
* Easily handles overlapping variable sets
* Each study imposes constraints on the observed variables.

30



LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

Causal graph(s)

Data (In)dependencies paths

Logic encoding @ of path

constraints in the causal graph
[EA—>D \ [EA—>B A EB—)D] \%

[Eamc AEcopl Vo]

Convert to logic formula!

Variables of the formula correspond to graph
features (edges, orientations).

[EA—>C \% [EA—>B A EB—>C] \%
[EAHC A EC—»D] \% ]

Truth setting assignments encode graphs that
satisfy all path constraints after
manipulation/selection.

31



CONVERSION TO LOGIC FORMULA: EXAMPLE (INTERVENTION)

* Suppose you know nothing about the causal structure G of 4, B, C.

* In a data set where B is manipulated, Ind(A, C|®)

* In path terms: A m-connecting path between A and C given @ in GB.

32



CONVERSION TO LOGIC FORMULA: EXAMPLE (INTERVENTION)

* Suppose you know nothing about the causal structure G of 4, B, C.

* In a data set where B is manipulated, Ind(A, C|®)

* In path terms: A m-connecting path between A and C given @ in GB.

A-C does not exist
—Ejc NEjcc N—Ejoc
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CONVERSION TO LOGIC FORMULA: EXAMPLE (INTERVENTION)

* Suppose you know nothing about the causal structure G of 4, B, C.
* In a data set where B is manipulated, Ind(A, C|®)

* In path terms: A m-connecting path between A and C given @ in GB.

A-C does not exist
—Ejc NEjcc N—Ejoc

A-B-C is not m-connecting
—(Ep-a/ Egc)
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CONVERSION TO LOGIC FORMULA: EXAMPLE (INTERVENTION)

* Suppose you know nothing about the causal structure G of 4, B, C.
* In a data set where B is manipulated, Ind(A, C|®)

* In path terms: A m-connecting path between A and C given @ in GB.

Logic formula:
(_|EA—>C /\ _IEA(—C /\ _|EA(—>C) /\
—1(EacpNEp_c)

B has no
incoming
edges in G5.

A-C does not exist
—Ejc NEjcc N—Ejoc

A-B-C is not m-connecting
—(Ep-a/ Egc)
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CONVERSION TO LOGIC FORMULA: EXAMPLE

Logic formula: TRUE

(_lEA—>C AN _lEA<—C N _IEAHC) N

_'(EA<—B/\ EB—>c) A

G E,c = False
E ¢ = False
E4o,c = False

EA(—B = False EB(—C = False
E,p =True Epe,c = False

"4

36



CONVERSION TO FIRST-ORDER LOGIC:
INPUT CONSTRAINTS

1) As many (conditional) dependencies and independencies from multiple datasets
as desired, even datasets over different variables

2) Meta-Information about the datasets
= for each variable and dataset, whether it was used for selection, or not, or unknown

= for each variable and dataset, whether it was manipulated (soft or hard), not, or
unknown

3) Structural prior knowledge

" presence/absence of direct edges, paths or dependencies
= root/leaf nodes

= any structural constraint that can be expressed in first-order logic




CONVERSION TO FIRST-ORDER LOGIC:
LOGIC VARIABLES AND SEMANTICS

Logic variables represent features of the graph and datasets:
edges, directed paths, m-connecting paths, selection targets, intervention targets

Setto true if Dep(X, Y| Z) is determined X — Y

in dataset D and false otherwise

\X - Y

Set to true if X is known to be used

for selection in dataset D } i
X---)
Z,D

Set to true if X is a known target of
manipulation in dataset D

X <Y

XY
Z,D
X..>Y
Z.D

-3
XD

a_>X£,

X has an arrow into Y

X and Y are confounded

X 1s an ancestor of Y

mconn(X,Y,Z) in dataset D
mconn(X,Y,Z) in dataset D (path into Y)
mconn(X, Y, Z) in dataset D (path out of Y)
X 1s used for selection in dataset D

X is manipulated (hard) in dataset D




CONVERSION TO FIRST-ORDER LOGIC :

INFERENCE RULES ETIO ALGORITHM (KDD 2016)

X-5Y X35 Y V(X -UAU--Y) (1)
Y X <= X--»Y (2)
XZ-’-}-JY o X~Z-,§Y Vv X-Z;B}’ (3)
X- ;5[...-* S (X=UAX¢gZ) (4a) |
Vv (X-Z- YAUSYAY EZA-YH) (4b)
V(}&Zg}’/\{—}r}’/\}rEZ/\—ﬁf) (4c)
VXYV A Y5 AU ANY €2 (4d)
vAZ;SYM’SMSM’gZ (4e) |
_ijg X YAY 2UAY ¢ Z A -UL) (5a) |
Y (AZE}’/\}’%{ ANY &Z AN=YE A=UL) (5b)
v(}; —}’/\}’<—:~[=/\} ¢ Z A -UL) (5c)
Vv (A >Y/\Y<—I>[ ANY €Z A=YEH A=UL) (5d)

Z,D

Ancestry
Acyclicity
m-connections

>— m-connections out of U

>— m-connectionsinto U




LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

EAAD v EAHB A EB‘)D
[Easc A Ec—»D] v
ete
EAAC v EAHB A EB%C

[Esec A Ecopl

A B C D E |

R —

Data (In)dependencies Paths Logic formula Causal graph(s)

N/ /

Exponential number of
1.Independencies

2.Paths
3. Solutions

40



LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

®) 0,

EAAD v EAHB A EB%D] v
[Eamc A Ec—»D] \ (&) (8)
G o'

EAHC/\EC—»D
Data (In)dependencies Paths Logic formula Causal graph(s)

Reduce the number of
independencies:

Run FCl and use only the
tests performed by FCI.

Limit max conditioning
set size.

41



LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

® ®
EAAD v EAHB A EB%D] v
EA—>C A EC—)D] \4 e e
P
EAAC v EAHB A EB%C O o

[Eaoc AEcopl vV
Data (In)dependencies Paths Logic formula Causal graph(s)

Reduce the number of paths:

Use inducing paths that connect
paths on the graph to 3 of
independence (given any set).

Limit the maximum path length.

42



LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

i =

Data

(In)dependencies

»@»

Paths

EAAD v EAHB A EB%D] v
[Easc A Ec—»D] v

®
()
£
EAAC \ EAHB A EB%C O o

[Eaoc AEcopl vV

Logic formula Causal graph(s)

Need a clever way to
encode constraints!

e.g. recursively
encode paths.

Convert to CNF for
most SAT solvers.
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LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

el

Data

(In)dependencies

»@»

Paths

® ®
EA‘)D v EAHB A EB%D] v
[Easc A EC—>D] v () (&)
cfiie
EA‘)C v EAHB A EB%C
[Esec AEcopl V ©
Logic formula Causal graph(s)

No need to enumerate all
solutions!

Query the formula for

* Asingle causal graph.

* A causal graph with specific
features.

* Features that are invariant
in all possible causal graphs.

44



SUMMARIZING PAIRWISE RELATIONS
Absent edges:

Absent in all
solutions

Contraceptives

Thrombosis

~

1
1
1
1
1
. Breast Cancer
1

s Protein Z

! il -y
| - T J
\ 2, o

\ 4 &

\ >

\
\
\
\
S
N Protein E
A ~
A F S
~So - 4 i_;.‘u ?‘
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SUMMARIZING PAIRWISE RELATIONS

Thrombosis Contraceptives

solid edges:
present in all
solutions

A Protein E

S - .

Wl

Absent edges:
Absent in all
solutions
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SUMMARIZING PAIRWISE RELATIONS

Thrombosis

Contraceptives

solid edges:
present in all
solutions

dashed edges:
present in some
solutions

N Protein E

Absent edges:
Absent in all
solutions
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SUMMARIZING PAIRWISE RELATIONS

Absent edges:
Absent in all
solutions

Thrombosis Contraceptives
lid ed solid endpoints:
solid edges: . .
tg I same orientation in
resent in a ' .
Pr=s® ! all solutions
solutions ; |
1 1
H X
I reas ancer I
: ’ i}‘il,} Progin YA
' {e; ")
dashed edges: \\ frg ¥ ¢
presentinsome [— %\
SO|Ut|onS \\\\ Protein E
RS - .
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SUMMARIZING PAIRWISE RELATIONS

Absent edges:
Absent in all
solutions

Thrombosis Contraceptives
lid ed solid endpoints:
solid edges: ) .
tg I L same orientation in
resentin a )
Pr=s® ! all solutions
solutions |
h !
1 1
1 reas ancer I
: ° ;’t‘ilﬂ Progin Z
\ t = &
. 1 &Pt
d?:?::t?:gsi;e " r Circle endpoints:
pl . orientation varies in
solutions P'°E?‘,;E different solutions
‘~__.¢5:‘;;%-;w
L
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STATISTICAL ERRORS RESULT IN CONFLICTING INPUTS

EA‘)D v EAHB A EB‘)D
[Easc A EC—>D] v
ete
EA‘)C v EAHB A EB%C

[Esec AEcopl V

A B C D E |

R —

Data Unsatisfiable Causal graph(s)
formula

Convert p-values to probabilities
Solve a subset of constraints optimizing a function of the probabilities

50



EXISTING ALGORITHMS

Vary in:
" Type of constraints:
= different types of paths (m-connecting, inducing, ancestral).
* translation to logic formula.
" Types of heterogeneity:
= Soft/hard interventions, selection.
* Preprocessing:
* Heuristics to limit number of constraints / paths.
* Conflict Resolution
= Method for calculating probabilities.

* Conflict resolution strategy (greedy/ max SAT / weighted max SAT).

" CS solver
= Initially SAT solvers, more recently ASP.
* Scalability

* Depends on choices above. Be exact/ focus on scalability.
= Difficult to determine
= huge variance depending on the problem.

CSAT+ [Triantafillou, et al., AISTATS 2010]

LOCI [Claassen and Heskes, UAI 2011]

SAT-Based Causal Discovery [Hyttinen, et al., UAI 2013]
Constraint-Based CD [Hyttinen, et al., UAI 2014]
COmbINE [Triantafillou and Tsamardinos, JMLR 2015]
ETIO [Borboudakis and Tsamardinos, KDD 2016]

ACI [S. Magliacane, T. Claassen, J.M. Mooij, arXiv]
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MORE

Using conversion to logic for causal discovery from time-course data

* Causal Discovery from Subsampled Time Series Data by Constraint

Optimization, [Hyttinen, Plis, Jarvisalo, Eberhardt and Danks, arXiv, 2016]

Using conversion to logic for identifying chain graphs.

* Learning Optimal Chain Graphs with Answer Set Programming

* [Sonntag, Jarvisalo, Pena, Hyttinen, UAI 2015]
Using conversion to logic to identify semi-Markov causal graphs.

« [Pen3, UAI 2016]
Using conversion to logic to estimate causal effects for an unknown graph

* [Hyttinen, Eberhardt and Jarvisalo, UAI 2015]
Massive proof-of-concept proof the techniques work for real data and can become
guantitative

* [Tsamardinos, et al. IMLR 2012]
More details, examples, references in recent UAI 2016 Tutorial Triantafillou &
Tsamardinos
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USE CASE: THE INSURANCE DATASET
REAL CAUSAL GRAPH

Age

SeniorTrain
x Mileage

DrivQuality Airbag Antilock Ruggedness

CarValue

Cushioning Accident

MedicalCost

LiabilityCost PropertyCost




APPLICATION ON REAL PROBLEMS

Insurance Data

Datasets

Age

SeniorTrain

MakeModel

VehicleYear

DrivQuality

Airbag

Ruggedness
Mileage
Cushioning
Accident
MedicalCost
LiabilityCost
PropertyCost

Observational

€ |Antilock

D€ |[carvalue

Selected based on
Antilock

X XXX

Soft Intervention
on Cushioning

X

X

Prior Knowledge

Anything
Costs
Age

%> Age
=¥-» Anything
=== Costs




USE CASE: THE INSURANCE DATASET
PROVED ANCESTRY RELATIONS

=3 Direct Causal Relation

éﬂ%\\ — = (Possibly) Indirect Causal Relation
TER YN
1\ S
u \ \ ‘\
Datasets _ _ ak odel
SeniorTrain 'M tM d /)/eh"cleY@r
| \ \/ /,
Observational p 4 \ WV < ~L I\illleage
DrvauahtyAlrgag Ary.}(ogf(\\'?uggedr\ess o N\ 3\
I CarValue
\\ ! / ( vV \ |
\ [
shienin Acmdent
,Gy\ /(,fk : \\ \ 'I
/\ l\ < WV :

Med‘if:alCost ! SN \\
) 4

Y
LiabilityCost APropertyCost




USE CASE: THE INSURANCE DATASET
PROVED ANCESTRY RELATIONS (TRANSITIVE REDUCTION)

=3 Direct Causal Relation

7 /Ag\e © N = =>» (Possibly) Indirect Causal Relation
/ \ N
/7 N
7’ \ N
Ve \ \
/7
Datasets 4
SeniorTrain MakeModeI /)/eh&leY@r
\\» /, \
Observational \34 Ilk _ { \ ,/’\ ~L I\:Illeage
/
DrvauahtyAlr g Aruwoq( Ruggedr\ess ~a 4
Prior Knowledge “ / } \ : CarValue
\ ~
/Af \ |
| Gyshlm\ng Accident | '
\ \7
/ \ I
/\ I\ < \ :
|

Med%:alCost I SN
v
LiabilityCost APropertyCost




USE CASE: THE INSURANCE DATASET
PROVED ANCESTRIES AND DIRECT CAUSAL RELATIONS

=3 Direct Causal Relation

€ = =>» (Possibly) Indirect Causal Relation

Datasets

SeniorTrain
\ Mileage

DrivQualit
Qualy

Observational

Selected based on
Antilock

Soft Intervention
on Cushioning

CarValue

,\/ N \

|
\
\Gysﬁim{ng ccident Il
I
1
|

\
% N
Med‘if:alCost\\ L PR
) 4

Prior Knowledge
2 e \%34 \4
LiabilityCost ropertyCost




USE CASE: THE INSURANCE DATASET
NON-TRIVIAL INFERENCES

Datasets

Observational

Selected based on
Antilock

Soft Intervention
on Cushioning

Prior Knowledge

=% No Direct Causal Relation
Age

= = No Causal Relation

SeniorTrain MakeModel  \fehicleYear

Mileage

DrivQuality Airbag Antilock Ruggedness_
,/7  ~XcCarvalue

//—’::)

—

\

Inferences among
/ variables that where

7
¥, never measured together!
LiabilityCost PropertyCost

MedicalCost




KEY-POINTS

Integrative logic-based causal discovery.
Different data distributions, same causal mechanism: use causal modeling to connect.

Can handle datasets of different variable sets, different experimental conditions, prior causal
knowledge.

Identify the set of causal graphs that simultaneously fit all datasets and reason with this set.
Convert problem to SAT or ASP; exploit 40 years of SAT-solving technology.

Query-based approach to avoid explosion of possible solutions!

Vision of automatically analyzing a large portion of available datasets in a domain.
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SNEAK PREVIEWS TO MXM RESEARCH
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LOGIC-BASED CAUSAL DISCOVERY

Scalability, robustness

"Relax assumptions such as Faithfulness
*Making quantitative predictions

"Extend for temporal data

*Add Verma constraints

*Application to a real-life insurance problem




FEATURE SELECTION — FASTER, BETTER, MULTIPLE SOLUTIONS, BIG
DATA

Forward-Backward Selection (FBS)
= very slow, especially for data with many variables
* returns single solution

We extended FBS

* Improving computational performance by 1-3 orders of magnitude

* Reducing number of selected variables, selecting up to 5 times fewer variables
* With comparable or better predictive performance

= With the ability to return multiple, statistically equivalent solutions

Extended single solution FBS also for Big Data

* Further improving computational performance, able to run on millions of samples and variables
* Vastly outperforming state-of-the-art feature selection methods on Big Data

= Almost linear speedup with available cores

= Super-linear scalability with sample size




LEARNING ORDINARY DIFFERENTIAL EQUATION MODELS

20— Algorithms for learning the structure and the
- parameters of a Dynamical System from time-
course measurements

(1) Eliminate the time dimension by
transforming the original problem to an
atemporal one.

-50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (2) Solve the transformed problem using the

Trajectories of Lorenz96 climate model. Sparse Signal Identification theory.
It is a chaotic system of Ordinary
Differential Equations given by:
Xn = Xp—1Xn41 — Xn-1Xn—2 — Xp + F,
n=1,..,N




R PACKAGE MXM: DESCRIPTION

Main focus of the package:
* Variable Selection
* (Causal) Bayesian Networks

Available variable selection methods span prototypical algorithms (forward, backward regression)
and advanced ones (SES, MMPC)

= A plethora of different data types can be addressed: continuous, ordinal, categorical, survival, proportions,
longitudinal, clustered.

Algorithmic and implementation optimization (e.g., several function are implemented directly in
C++)




AYTOMATED MACHINE LEARNING
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ind highly-predictive, readily interpretable molecular signaturé‘s”.w
‘Easily and fast.

e — Discoverer
a plug-in for /17 hin :

m

Commercial CLC-Bio (a QIAGEN company) plugin for high-throughput data analysis.
Automatically identifies multiple signatures.
Can handle various data types.
* Including binary, multi-class, continuous, and time-to-event outcomes.
Computationally efficient, fine-tuned implementation.
» Easily handles even tens of thousands of molecular quantities.
High quality results, using state-of-the art techniques.
Interpretable output, helping the user understand the results.
Soon available as a cloud service
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TUMORS

LaBreche et al. BMC Medical Genomics 2011, 4:61
http://www.biomedcentral.com/1755-8794/4/61

125 gene expression profiles of patients

BMC
Medical Genomics

RESEARCH ARTICLE Open Access

Integrating Factor Analysis and a Transgenic
Mouse Model to Reveal a Peripheral Blood

Predictor of Breast Tumors

Heather G LaBreche'”", Joseph R Nevins'? and Erich Huang'**

* 31 normal, 94 breast tumor (37 benign, 57 malignant)
54,675 gene expression probesets

Introduced in LaBreche et al., BMC medical
genomics (2011)
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B3 BioSignature Discoverer

Specify Analysis Type and Outcome

-

. Choose where to run

N

Select Data

w

. Specify Analysis Type
and Outcome

What type of analysis to perform?
(® Classification
(O Regression

(O Time-to-event / Survival Analysis (Censored target)

Choose the target variable
From the input features: target] ~
OR

Load from file

? ) Previous Next Finish

BioSignature Discoverer
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ANALYSIS RESULTS

4 Performance Metrics

Metric Average 95% Confidence Interval
Accuracy 0,977 [0,946, 1,000]
Area Under the ROC Curve 0,985 [0,951,1,000]
Precision for class 1.0 0,983 [0,900,1,000]
Precision for class 2.0 0,970 [0,930,1,000]
Recall for class 1.0 0,917 [0,817,1,000]
Recall for class 2.0 1,000 [0,940, 1,000]
Sensitivity for class 1.0 0,917 [0,817,1,000]
Sensitivity for class 2.0 1,000 [0,940,1,000]
Specificity for class 1.0 1,000 [0,940, 1,000]
Specificity for class 2.0 0,917 [0,817,1,000]

ILaBreche et al. achieve 0.97 Area Under the ROC Curve

2Analysis took less than 3 minutes on a laptop

5 Individual feature contribution

Individual feature contribution

Relative Accuracy

Signature elements

Relative Accuracy

o 8 8 o2 o DO !
[ e ]

2
=]

=
=

=
=]

6 Cumulative feature contribution

Cumulative feature contribution

Signature elements




SINGLE-CELL NETWORK RECONSTRUCTION SYSTEM

(SCENERY)

Step 1 - Data Loading Step 2 - Analysis Setup

Step 3 - Perform Analysis

* Upload FCS files « Data Selection/Filtering ‘ = Analysis Calibration
- " . in Markers, Number of
i + Define Study Design + Select Analysis Method Protein 3
ArCh IteCtu re Upload CSV file or Create online * Univariate ;amplles, Hyper-Parameters
J Population Comparison, Regression * Resu Fs .
» Network Reconstruction Analysis summary, Plotting
Web-based, open architecture MMPC, HC, PC, FC, A

Wizard design pattern: Step-based User Interface

Modularity: Easy to incorporate new analysis methods
Functionalities

Visualization: Histograms, Scatter/Density/Violin plots, Network graphs

Univariate Analysis : Population Comparison, Regression

Network Reconstruction Analysis

= (Conditional) Association Networks (COR, MMPC) CellProlferation
= Probabilistic Causal Networks (PC, FCI, IDA)
= Bayesian Networks (HC)

* Currently available methods: MMPC, PC, HC, FCI, IDA, COR

ScatterPiot Matrix

rag_ NG coes.pe IGPEVOTIO et Promekon Dye_efhorss

1L2_PECF594




USE CASE

Data Loading Experiment Setup Perform Analysis Share Select another Analysis Method * Data Loading Experiment Setup Perform Analysi Share Select another Analysis Method

= [ - , =
Data: Bendall et al., Resus e S
Science, 2011 . Results
(a) Overlapping density T T pew p—
plots for the marker g | = s
p38 on 2 donors. g 156.pZ5
(b) Reconstructed .
network (MMPC) E 164-pSLP-76
on selected protein “ e = 169-pP38
markers: SYK, BLNK, —— @g . 153 pMAPKAPK? @g
PLC2, p38 and - (a) (b)
MAPKAPK?2.

G. Athineou, G. Papoutsoglou, S. Triantafullou, |. Basdekis, V. Lagani, I. Tsamardinos (2016): SCENERY: a Web-Based Application for Network Reconstruction and
Visualization of Cytometry Data, PACBB 2016.
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