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Goal

 To learn the causal effect of some treatment X on 

some outcome Y with observational data.

 Assumptions: 

 Y does not precede X causally

 X and Y do not precede any other covariates measured

 Variations of faithfulness and parameterizations

X Y

Z



Outline

 We will cover:

 The linear case, where all variables are continuous and 

all relationships are linear

 Sets of causal effects can be discovered, sometimes.

 The role of non-Gaussianity.

 The nonlinear discrete case (binary in particular)

 The goal is to bound causal effects.

 The faithfulness continuum.



Take-home Messages

 The results will rely on different ways of combining 
backdoor structures and instrumental variables.

 Discussion points:

 How to explore redundancies and/or contradictions of 
assumptions?

 How to do sensitivity analysis?

 How to deal with weak associations, both on discovery 
and control?

 Please interrupt me at any moment.



QUICK BACKGROUND



Formalizing Observational Studies

We would like to infer

P(Outcome | Treatment) in 

a “world” (regime) like this

All we have is (lousy?) data for 

P(Outcome | Treatment) in 

a “world” (regime) like this instead

Smoking Lung cancer

Common 

causes

Smoking Smoking Lung cancer

Common 

causes

We better make use of an indexing notation to distinguish these cases.

I will adopt Pearl’s “do” operator.



Formalizing Observational Studies

 The jump to causal conclusions from observational 

data requires assumptions linking different 

regimes.

Smoking Lung cancer

Common 

causes

Smoking Smoking Lung cancer

Common 

causes

Interventional Regime:

P(Outcome | do(Treatment))

Observational Regime:

P(Outcome | Treatment)

invariant

invariantoverridden

possibly

learnable

possibly

learnable

possibly

learnable



General Setup

 In what follows, we will assume we are given a 

treatment variable X, and outcome Y, and some 

covariates Z that precede X and Y causally.

 Unlike the typical graphical model structure 

learning problem, we are not interested in 

reconstructing a full graph. All we care about is

P(Y | do(X = x)).



Trick 1: “Adjust” 

(a.ka., “The Backdoor Adjustment”)

Smoking Lung cancer

Genetic 

Profile



Why It Works

 Estimand: P(Y | do(X = x)), not P(Y | X = x)

 Model:

 Relation to estimand:

 P(Y | do(x)) =   P(Y | do(x), Z = z) P(Z = z| do(x))

X Y

Z

z



Why It Works

P(Y | do(x)) =   P(Y | do(x), Z = z) P(Z = z| do(x))

=   P(Y | X = x, Z = z) P(Z = z)

Y

Z

z

X

invariance invariance

z



Note: We don’t really need “all” 

hidden common causes

X Y

U

Z



Trick 2: Instrumental Variables

 Variables that can act as “surrogate” experiments.

 Sometimes they are surrogate experiments.

 Valuable in the presence of unmeasured 

confounding.

Vaccination Health

Here be 

dragons

Encouragement



(Conditional) Instrumental Variables

 Conditionally, no direct effect, no unblocked 

confounding with outcome, not affected by 

treatment.

X Y

U

W

X Y

W

U

Z1

Z2



Why Do We Care?

 Instrumental variables constraint the distribution of 

the hidden common causes.

 It can be used to infer bounds on causal effects or, 

under further assumptions, the causal effects even 

if hidden common causes are out there.



THE LINEAR CASE

This is work in progress



Parametric assumptions

 Assume (causal) acyclic graphical model with linear 

relationships

Xi

Xp(1)

Xp(n)
…

Xi = i1Xp(1) + … + inXp(n) + i



In Our Setup

 The ultimate goal is to estimate coefficient yx.

 In practice, we will estimate sets of plausible 

values.

X Y

U

Z

…

…



A Test for Back-Door Adjustments

 If error terms are non-Gaussian then least-square 

residuals of treatment and outcome on covariates 

are independent if and only if there are no 

unblocked hidden common causes.

Entner et al. (AISTATS, 2012)

X Y

U

Z

z

x

u

y

rX  X – (X ~ Z)l.s.

rY  Y – (Y ~ X + Z)l.s.

rX rY

This assumes known ordering!



What If They are Dependent?

 Too bad! Go home empty-handed.

 Instrumental variables, maybe? 

But how to test them? 

What if one of my covariates could in 

principle be an instrumental variable?



Linear Instrumental Variables
(or: “All of Econometrics in a Single Slide”)

X Y

U

W
xw yx

wx = xw ww

wy = xw yx ww

yx = wy / wx



IV Discovery

 We would like to discover IVs in the true graph that 

generated the data, so we could exploit them.

 For that we will focus on a particular graphical 

characterization of what it means to be an IV.

 We then illustrate why this won’t be easy without 

further assumptions even in linear systems.



A Graphical Criteria for Defining IVs

 W is an IV, conditioned on Z, for X  Y if

1. Z does not d-separate W from X

2. Z d-separates W from Y in the graph where we 

remove X  Y 

3. Z are non-descendants of X and Y

X Y

W

U

Z1

Z2

Notice how 1 and 3 are “easy to test”.



Falsifying Instrumental Variables

X Y

U

W1

xw1

yx

W2 xw2

yx = w1y / w1x= w2y / w2x

A tetrad constraint.



The Converse Does NOT Hold!

X Y

U2

W1 yx

W2

yx  w1y / w1x= w2y / w2x

U1



Strengthening the Assumptions

 Say you split your set Z into two: ZV and ZI, where 

ZV are “valid IVs” given ZI, the possible “invalid” 

ones.

X Y

U

Z1

Z2

Z3

Z4

sisVIVE, Kang et al. (JASA, 2015)



Strengthening the Assumptions

 If in the true and unknown model we have more 

than half of Z is valid, we are guaranteed we can 

use ZV as instrumental variables (given ZI).

Kang et al. (JASA, 2015)



An “Equivalent” Algorithm to sisVIVE



Still Strong, Sometimes Too Strong

X Y

U

W1

W100

Z101…

 All of W1, …, W100 are valid IVs, if we don’t condition on Z101

 But sisVIVE requires a variable is either an IV or a conditioning 
variable…



Alternative: TETRAD-IV



Interpretation

 What is the graphical converse of the tetrad 

constraint?

 Known: the Tetrad Representation Theorem, via the 

notion of “choke point”.

X Y

U

W1

W2

X Y

U2

W1 W2

U1

X is a choke point for

{W1, W2} x {X, Y}

U1 is a choke point for

{W1, W2} x {X, Y}



Interpretation

 What is the graphical converse of the conditional

tetrad constraint?

 Cannot appeal to the known result anymore: DAGs are 

not closed under conditioning.

 Instead, re-interpret a more recent result by Sullivant et 

al. (Annals of Stats, 2010)



Sullivant et al.’s Trek Separation

 Cross-covariance of two sets A and B will drop rank 

if “small enough” sets “t-separate” A from B.

j1Vi2

Vj2

V1

V0

V2

Vi1

V

Here, V0 “t-separates” {Vi1, Vi2, V0} from {Vj1, Vj2, V0}

The rank of cross-covariance of these two sets will be (typically) 2.



Conditional Tetrad Constraint 

Interpretation

 If ix.z jy.z = iy.z jx.z, there will be a set that includes 

Z that t-separates {Wi, Wj, Z} from {X, Y, Z}.

 This is a necessary but not sufficient condition to 

guarantee Criterion 2:

 “Z d-separates W from Y in the graph where we 

remove X  Y”

|Σ{Wi, Wj, Z}, {X, Y, Z}| = |ΣZZ||ix.z jy.z – iy.z jx.z|  



Tetrad Equivalence Class 

 Each TETRAD-IV output can be explained by these 

“choke sets”. If they differ, it is because of 

 a latent element in this choke set (choke set is Z and 

“Uz”, instead of Z and X), which links “IVs” to Y

 a rogue non-directed path activated by conditioning

X Y

U

W1

Wj

Z



Tetrad Equivalence Class

 Size can increase linearly with the number of 

variables!

X Y

U

W
1a

W
1b

W
2a

W
2b

W
pa

W
pb

...

U
1

U
2

U
p

U
0



Tetrad Equivalence Classes

 If there is at least one genuine pair of conditional IVs in 
the solution, then the output set provides upper and 
lower bounds on causal effect.

 This is a much weaker assumption than the one in sisVIVE.

 Also: <INCLUDE FAVOURITE PET IDENTIFIYING 
ASSUMPTION HERE>

 “Largest set wins”

 “Strongest association wins”

 “Exclude implausibly large effects”

 “Most common sign wins”

 Etc.



Non-Gaussianity

 We can generalize the main result of Entner et al. 

(2012), and exclude solutions that are due to non-

directed active paths by a testable condition.

X Y

U2

Wi Wj

U1

X Y

U

W1

Wj

Z

Falsifiable Falsifiable



Backdoor vs IV trade-off

 Unfortunately, this also excludes some genuine IVs.

 Those will not be excluded if backdoors with 

treatment X are blocked.

X Y

U

Wi Wj

Ux

X Y

U

Wi Wj

Ux

Rejected Preserved

Z



Empirical Results

 This is work in progress.

 Practical implementation does not use tests of tetrad 
constraints: much of the signal is weak, tests perform 
horribly.

 Without going in details, it clusters empirical estimates of causal 
effects, assumes a minimal number of IVs.

 Practical implementation does not do combinatorial search 
on Z: again too much error. Instead, an all-or-nothing is 
suggested: discard solutions that fail the non-Gaussianity
tests.

 It does well in sample sizes relatively large, and seems to be 
comfortably better than sisVIVE when its assumptions fail. 
Non-Gaussianity tests require very large sample sizes 
though.

 Contact me for current manuscript (soon to be re-arXived)



THE NON-LINEAR DISCRETE 

(BINARY) CASE

NIPS, 2014; JMLR, 2016



The Problem

X Y

 Given binary X precedes binary Y causally, 

estimate average causal effect (ACE) using

observational data

ACE ≡ E[Y | do(X = 1)] – E[Y | do(X = 0)] = 

P(Y = 1 | do(X = 1)) – P(Y = 1 | do(X = 0))



Goal

 To get an estimate of bounds of the ACE

 Rely on the identification of an auxiliary variable 

W (witness), an auxiliary set Z (background set), 

and assumptions about strength of dependencies

on latent variables

X YW

UZ



 But where do the missing edges come from?

Instrumental Variables in 

Discrete Systems

X YW

U

LP(Y, X | W) ≤ ACE ≤ UP(Y, X | W)



Exploiting Independence Constraints

 Faithfulness provides a way of sometimes finding a 

point estimator

 Faithfulness means independence in probability iif

“structural” independence (Spirtes et al., 1993)



Faithfulness

 W independent of Y, but not when given X: 

conclude the following (absentia hidden common 

causes)

X

YW

a b

X = aW + bY + ex

P(W, X, Y) = P(W)P(Y)P(X | W, Y)

P(W, Y | X) α P(W)P(Y)P(X | W, Y)



(Lack of) Faithfulness

 W independent of Y, but not when given X: 

different structure

X

YW

a b

-ab



The Problem with 

Naïve Back-Door Adjustment

 It is not uncommon in applied sciences to posit that, 
given a large number of covariates Z that are 
plausible common causes of X and Y, we should 
adjust for all

 Even if there are remaining unmeasured 
confounders, a common assumption is that adding 
elements of Z will in general decrease bias 
|ACEtrue – ACEhat|

Pest(Y = 1 | do(X = x)) =  P(Y = 1| x, z)P(z)
z



The Problem with 

Naïve Back-Door Adjustment

 Example of failure:

X Y

Z

U1 U2

Pearl (2009). Technical Report R-348

P(Y = 1 | do(X = x)) = P(Y = 1 | X = x)   P(Y = 1 | x, z)P(z)
z



Exploiting Faithfulness:

A Very Simple Example

 W    Y, W   Y | X + Faithfulness. Conclusion?

 Naïve estimator vindicated:

ACE = P(Y = 1 | X = 1) – P(Y = 1 | X = 0)

 This super-simple nugget of causal information has 

found some practical uses on large-scale problems

X Y

W

No unmeasured confounding

U



Entner et al.’s Background Finder

 Entner, Hoyer and Spirtes (2013) AISTATS: two 

simple rules based on finding a witness W for a 

correct admissible background set Z

 Generalizes “chain models” W  X  Y



Rule 1: Illustration

 Note again the necessity of the dependence of W 
and Y

X Y

Z
W

X Y

Z
W

X Y

Z
W

U



Reverting the Question

 What if instead of using W to find Z to make an 

adjustment by the back-door criterion, we find a Z 

to allow W to be an instrumental variable that 

gives bounds on the ACE?



Why do We Care?

 A way to weaken the faithfulness assumption

 Suppose also by “independence”, we might mean 

“weak dependence” (and by “dependence”, we might 

mean “strong dependence”)

 How would interpret the properties of W in this 

case, given Rule 1?



Modified Setup: 

Main Assumption Statement

 Given Rule 1, assume W is a “conditional IV for 

X  Y” in the sense that given Z

 All active paths between W and X are into X

 There is no “strong direct effect” of W on Y

 There are no “strong active paths” between W and X, 

nor W and Y, through common ancestors of X and Y

 The definition of “strong effect/path” creates free 

parameters we will have to deal with, and a 

continuum of faithfulness-like assumptions.



 Bounds on the ACE in the “standard IV model” can be quite 
wide even when W    Y | X

 This means faithfulness can be quite a strong assumption, 
and/or “worst-case” analysis can be quite conservative.

Motivation

X YW

U

Upper minus lower bound = 1 – |P(X = 1 | W = 1) – P(X = 1 | W = 0)|



Motivation

 Our analysis can be seen as a way of bridging the 

two extremes of point estimators of faithfulness 

analysis and IV bounds without effect constraints.

X YW

UZ



The High-Level Idea

 The following might be complicated, but here’s a 
summary:

 Introduce a redundant parameterization, parameters 
for the two regimes (observational regime, and regime 
with intervention on X).

 These parameters cannot be fully unconstrained if we 
assume “some edges are weak”.

Machinery behind is linear programming.

 So statistical inference on the observational regime 
implies statistical inference on bounds of the ACE.

Machinery behind is Bayesian learning with MCMC.



Illustration of Result: Influenza Data

 Effect of influenza vaccination (X) on hospitalization 

(Y = 1 means hospitalized)

 Covariate GRP: randomized, doctor of that patient 

received letter to encourage vaccination

 Bounds on average causal effect using standard 

methods: [-0.23, 0.64]

 The method we will discuss instead picked DM 

(diabetes history), AGE (dichotomized at 60 years) 

and SEX as variables that allowed for adjustment.



Influenza Data

 Our method’s estimated interval: [-0.10, 0.17].

 Under some sensitivity analysis postprocessing, the 

estimate was [-0.02, 0.02].



Influenza Data: Full Posterior Plots



Influenza Data: Full Posterior Plots



The High-Level Idea

 The following might be complicated, but here’s a 
summary:

 Introduce a redundant parameterization, parameters 
for the two regimes (observational, and intervention on 
X).

 These parameters cannot be fully unconstrained if we 
assume “some edges are weak”.

Machinery behind is linear programming.

 So statistical inference on the observational regime 
implies statistical inference on bounds of the ACE.

Machinery behind is Bayesian learning with MCMC.



Expressing Assumptions

 Some notation first, ignoring Z for now:

X YW

U



Stating Assumptions

XU

YU

YW



Stating Assumptions

W

U



Relation to Observations

 Let yx.w be the expectation of the first entry by 

P(U | W): this is P(Y = y, X = x | W = w)

 Similarly, let xw be the expectation of the second 

entry: this is P(Y = 1| do(X = x), W = w)



Context

 The parameterization given was originally 

exploited by Dawid (2000) and Ramsahai (2012)

 It provides an alternative to the structural equation 

model parameterization of Balke and Pearl (1997)

 Both approaches work by mapping the problem of 

testing the model and bounding the ACE by a linear 

program

 We build on this strategy, with some generalizations



Estimation

 Simpler mapping on (*, *)  P(W, X, Y | U), 

marginalized, gives constraints on  ≡ P(W, X, Y)

 Test whether constraints hold, if not provide no 

bounds

 Plug-in estimates for  to get (, ) polytope. Find 

upper bounds and lower bounds on the ACE by 

solving linear program and maximizing/minimizing 

objective function

f() = (11 – 01)P(W = 1) + (10 – 00)P(W = 0)



Coping with Non-linearity

 Notice that because of constraints such as

there will be non-linear constraints in  ≡ P(W, X, Y)

 The implied constraints are still linear in  ≡ P(Y | do(X), 
W). So linear programming formulation still holds, 
treating  as a constant.

 Non-linearity on  can be a problem for estimation of  and 
derivation of confidence intervals. We will describe later a 
Bayesian approach that does that simply by rejection 
sampling



Algorithm

In what follows, we assume dimensionality of Z is small, |Z| < 10



Recap: So far, everything in the 

population

 “Rely on the identification of an auxiliary variable 

W (witness), an auxiliary set Z (background set), 

and assumptions about strength of dependencies

on latent variables”

X YW

UZ



Bayesian Learning

 To decide on independence, we do Bayesian model 
selection with a contingency table model with Dirichlet
priors

 For each pair (W, Z), find posterior bounds for each 
configuration of Z

 Use Dirichlet prior for  (for each Z = z), conditioned on the 
constraints of the model, using rejection sampling

 Propose from unconstrained Dirichlet

 Reject model if 95% or more of proposed parameters are 
rejected in the initial round of rejection sampling

 Feed sample from the posterior of  into linear program to 
get a sample for the upper bound and lower bound



Difference wrt ACE Bayesian Learning

 Why not put a prior directly on the latent variable model?

 Model is unidentifiable  results extremely sensitive to priors

 Putting priors directly into  produces no point estimates, but avoids 

prior sensibility



Wrapping Up

 Finally, one is left with different posterior 
distributions over different bounds on the ACE

 Final step is how to summarize possibly conflicting 
information. Possibilities are:

 Report tightest bound

 Report widest bound

 Report combined smallest lower bound with largest 
upper bound

 Use “posterior of Rule 1” to pick a handful of bounds 
and discard others



Recap

 Invert usage of Entner’s Rules towards the 

instrumental variable point of view.

 Obtain bounds, not point estimates.

 Use Bayesian inference, set up a rule to combine 

possibly conflicting information.



“Witness Protection Program”

 Because the framework relies on using a linear 

program to protect a witness variable against 

violations of faithfulness, we call this the 

Witness Protection Program (WPP) algorithm.



Illustration: Synthetic Studies

 4 observable nodes, “basic set”, form a pool that can 
generate a possible (witness, background set) pair

 4 observable nodes form a “decoy set”: none of them 
should be included in the background set

 Graph structures over “basic set” + {X, Y} are chosen 
randomly

 Observable parents of “decoy set” are sampled from 
“basic set”

 Each decoy has another four latent parents, {L1, L2, L3, L4}

 Latents are mutually independent

 Each latent variable Li uniformly chooses either X or Y as a 
child 

 Conditional distributions are logistic regression models with 
pairwise interactions



Illustration: Synthetic Studies

 Relaxations

 Estimators:

 Posterior expected bounds

 Naïve 1: back-door adjustment conditioning on everybody

 Naïve 2: plain P(Y = 1 | X = 1) – P(Y = 1 | X = 0)

 Backdoor by faithfulness

X YW

(0.9, 1.1), (1, 1)

0.2

0.2

0.2

U



Example

 Note: no theoretical witness solution

YX

L1

W4

W1

W2

W3

D1 D2 D3 D4

L4L3L2



Evaluation

 Bias definition:

 For point estimators, just absolute value of difference 
between true ACE and estimate

 For bounds, Euclidean distance between true ACE and 
nearest point in the bound

 Summaries (over 100 simulations):

 Bias average

 Bias tail mass at 0.1

 proportion of cases where bias exceeds 0.1

 Notice difficulty of direct comparisons



Summary

Bias average Bias tail mass at 0.1



Summary



On-going Work

 Finding a more primitive default set of assumptions 
where assumptions about the relaxations can be 
derived from

 Doing without a given causal ordering

 Large scale experiments

 Scaling up for a large number of covariates

 Continuous data

 More real data experiments

 R package available at CRAN/GitHub: “CausalFX”
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