Center for Causal Discovery:

Summer Short Course/Datathon - 2016

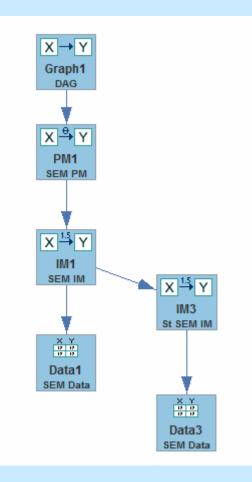
June 13-18, 2015

Carnegie Mellon University

Outline

Models → Data

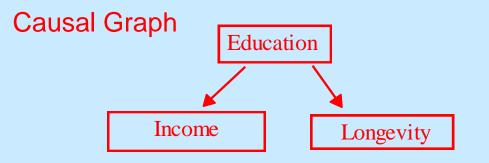
- 1) Representing/Modeling Causal Systems
- 2) Estimation and Model fit
- 3) Hands on with Real Data


Models ← Data

- 1) Markov Axiom and D-separation
- 2) Model Equivalence
- 3) Model Search

Standardized SEMs

- Attach a SEM PM to your 3-4 variable graph
- 2) Attach a SEM IM to the SEM PM
- 3) Change the coefficient values.


- Attach a Standardized SEM IM to the SEM PM, or the SEM IM
- 5) Compare the Implied Matrices

Tetrad Demo & Hands-On

Generalized SEM

- 1) The Generalized SEM is a generalization of the linear SEM model.
- 2) Allows for arbitrary connection functions
- 3) Allows for arbitrary distributions
- 4) Simulation from cyclic models supported.

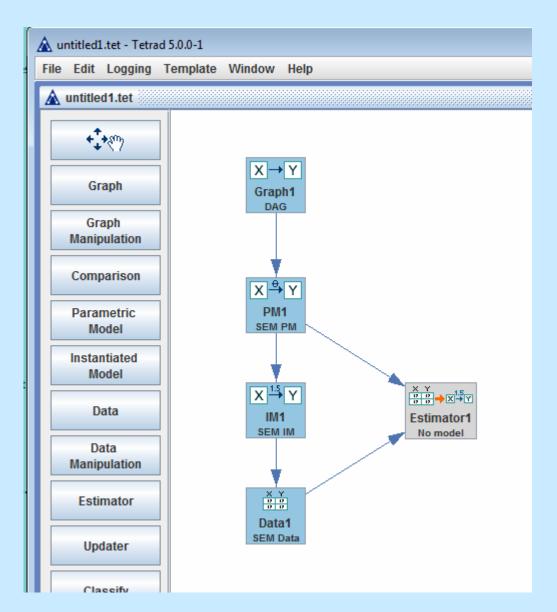
SEM Equations:

 $\begin{aligned} & \text{Education} \coloneqq \epsilon_{\text{Education}} \\ & \text{Income} \coloneqq \beta_1 \text{ Education} + \epsilon_{\text{income}} \\ & \text{Longevity} \coloneqq \beta_2 \text{ Education} + \epsilon_{\text{Longevity}} \end{aligned}$

 $P(\epsilon_{ed}, \epsilon_{Income}, \epsilon_{Income}) \sim N(0, \Sigma^2)$

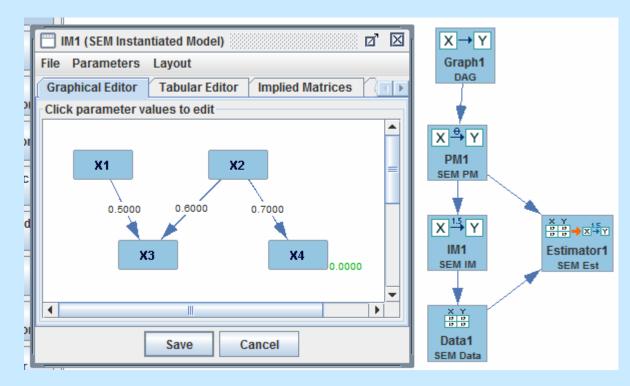
 $\begin{array}{l} \underline{\text{Generalized}} \text{ SEM Equations:} \\ \text{Education} \coloneqq \epsilon_{\text{Education}} \\ \text{Income} \coloneqq \beta_1 \text{ Education}^2 + \epsilon_{\text{income}} \\ \text{Longevity} \coloneqq \beta_2 \ln(\text{Education}) + \epsilon_{\text{Longevity}} \end{array}$

 $P(\epsilon_{ed}, \epsilon_{Income}, \epsilon_{Income}) \sim U(0, 1)$

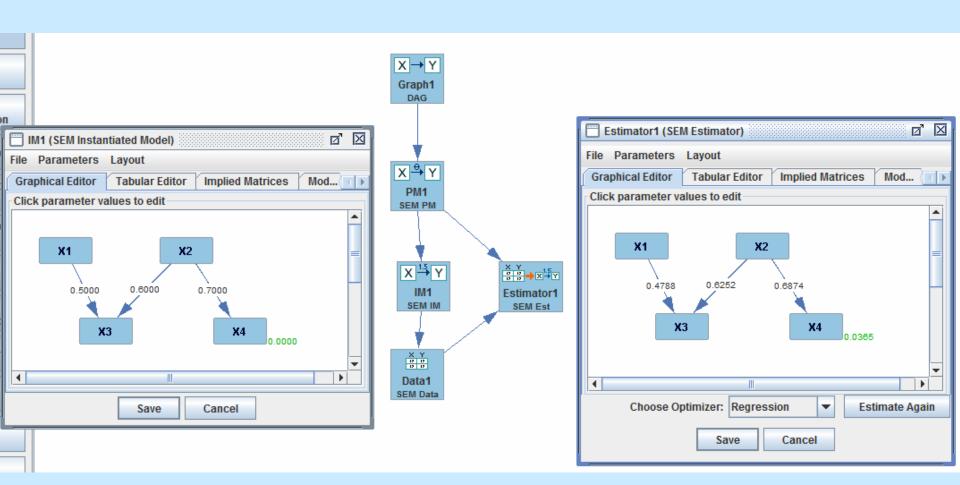

Hands On

- 1) Create a DAG.
- 2) Parameterize it as a Generalized SEM.
- In PM select from Tools menu "show error terms"
 Click on error term, change its distribution to Uniform
- 4) Make at least one function non-linear
- 5) Make at least one function interactive
- 6) Save the session as "generalizedSEM".

Estimation

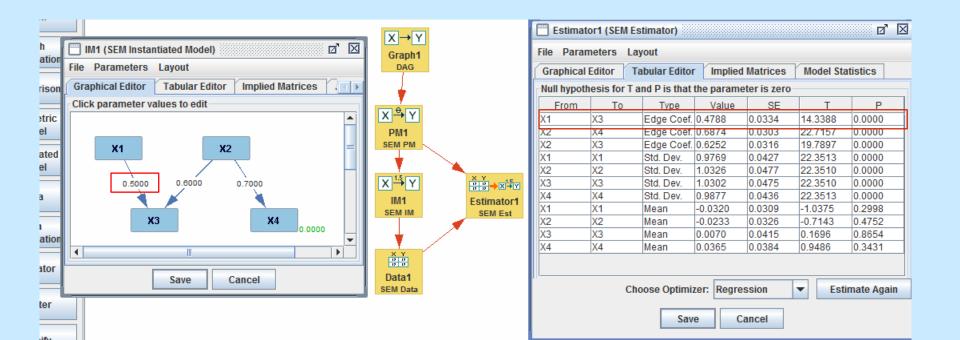

PUF 📄 📄		(m)	<u>.</u>	45.1-	
🛕 untitled1.tet - Tetra	ad 5.0.0-1				
File Edit Logging	Template	Window	Help		
🛦 untitled1.tet					
	_				
+ ‡+⊗γ					
Graph		X -	h1		
Graph Manipulation					
Comparison		X	Y		
Parametric Model		PM SEM			
Instantiated					
Model					
Data		IM SEM	1		× Y ⇒ ⇒ → × → Y Estimator1 No model
Data					ino inouci
Manipulation			r		
Estimator		Data			
Updater		SEM			

Estimation



Tetrad Demo and Hands-on

- 1) Select Template: "Estimate from Simulated Data"
- 2) Build the standardized SEM IM shown below
- 3) Generate simulated data N=1000
- 4) Estimate model.
- 5) Save session as "Estimate1"

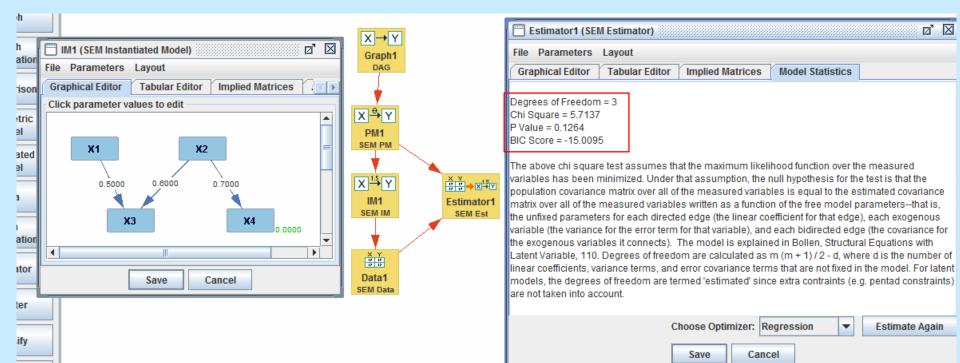


Estimation

Coefficient inference vs. Model Fit

Coefficient Inference: Null: coefficient = 0, e.g., $\beta_{X1 \rightarrow X3} = 0$ p-value = p(Estimated value $\widehat{\beta}_{X1 \rightarrow X3} \ge .4788 | \beta_{X1 \rightarrow X3} = 0 \& \text{rest of model correct}$) Reject null (coefficient is "significant") when p-value < α , α usually = .05

Coefficient inference vs. Model Fit


Coefficient Inference: Null: coefficient = 0, e.g., $\beta_{X1 \rightarrow X3} = 0$

p-value = p(Estimated value $\widehat{\beta}_{X1 \rightarrow X3} \ge .4788 | \beta_{X1 \rightarrow X3} = 0 \& \text{rest of model correct}$)

Reject null (coefficient is "significant") when p-value $< < \alpha$, α usually = .05,

Model fit: Null: Model is *correctly specified* (constraints true in population)

p-value = $p(f(Deviation(\Sigma_{ml}, S)) \ge 5.7137 | Model correctly specified)$

Coefficient inference vs. Model Fit

	coefficient $\widehat{\beta}_{X1 \rightarrow X3}$	Model fit χ^2_{df}
	Null: $\beta_{X1 \rightarrow X3} = 0$	Null: Model is correctly specified
p-value < .05	Can reject 0 Significant edge	Can reject correct specification, Model not correctly specified
p-value > .05	Can't reject 0, insignificant edge	Can't reject correct specification, model <i>may be</i> correctly specified

Model Fit

True Model Specified Model X1 ХЗ X1 B1.... M1 MЗ 0.6000 **X**2 M2

Implied Covariance Matrix						
	X1	X2	ХЗ			
X1	1					
X2	β1	1				
X3	β1*β2	β 2	1			

Population Covariance Matrix

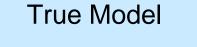
X2

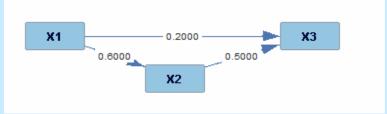
Х3

0.5000

	X1	X2	X3
X1	1		
X2	.6	1	
X3	.3	.5	1

$$\widehat{\beta 1} = r_{X1,X2} = \sim .6$$
$$\widehat{\beta 2} = r_{X2,X3} = \sim .5$$


~

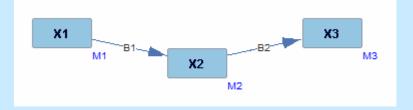

$$\beta 1 \ \beta 2 = \sim .3 = \rho_{X1,X3}$$
 14

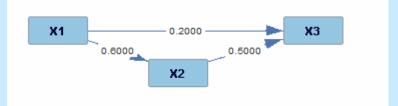
Model Fit

X1 M1 B1 X2 M2 X3 M3 M3

Specified Model

Implied Covariance Matrix				Population Covariance Matrix				ix	
		X1	X2	Х3		X1	X2	X3	
	X1	1			X1	1			
	X2	β1	1		X2	.6	1		
	X3	β 1* β 2	β 2	1	X3	.5	.5	1	


Unless $r_{X1,X3} = r_{X1,X2} r_{X2,X3}$


Estimated Covariance Matrix *≠* Sample Covariance Matrix

Model Fit

Specified Model

True Model

Implied	Covariance	Matrix
---------	------------	--------

X1

1

β1

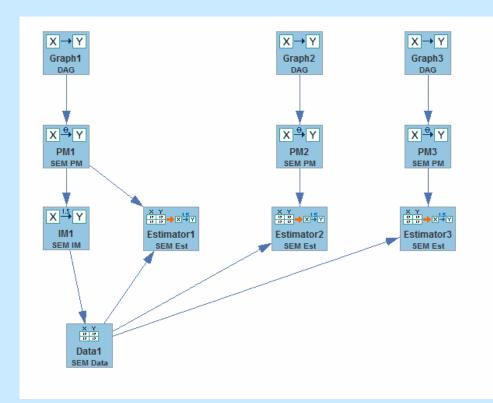
β1*β2

X1

X2

Х3

Population Covariance Matrix


X2	Х3		X1	X2	Х3
		X1	1		
1		X2	.6	1	
β 2	1	X3	.32	.5	1

Model fit: Null: Model is *correctly specified* (constraints true in population) $\rho_{X1,X3} = \rho_{X1,X2} \rho_{X2,X3}$

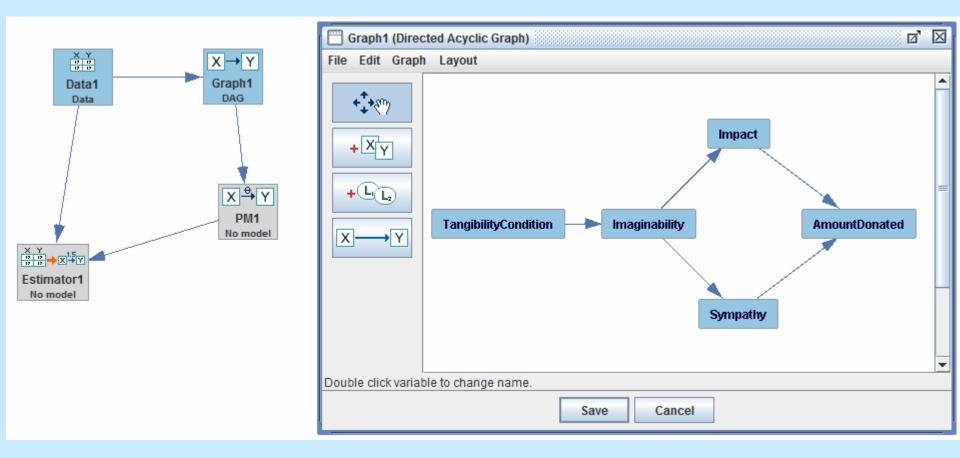
p-value = $p(f(Deviation(\Sigma_{ml}, S)) \ge \chi 2 \mid Model correctly specified)$

Tetrad Demo and Hands-on

- Create two DAGs with the same variables each with one edge flipped, and attach a SEM PM to each new graph (copy and paste by selecting nodes, Ctl-C to copy, and then Ctl-V to paste)
- 2) Estimate each new model on the data produced by original graph
- 3) Check p-values of:
 - a) Edge coefficients
 - b) Model fit
- 4) Save session as:"estimation2"

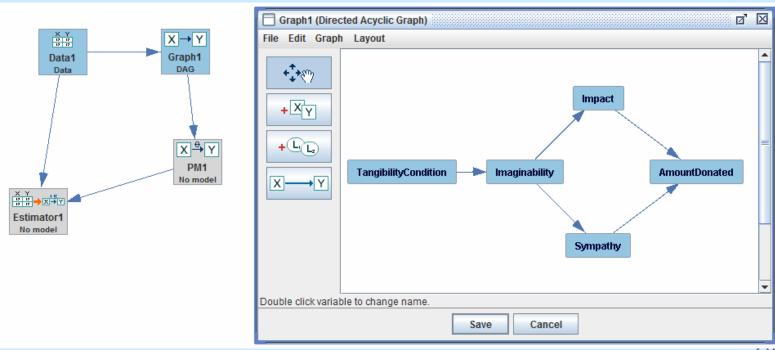
Charitable Giving

What influences giving? Sympathy? Impact?


"The Donor is in the Details", Organizational Behavior and Human Decision Processes, Issue 1, 15-23, C. Cryder, with G. Loewenstein, R. Scheines.

N

n

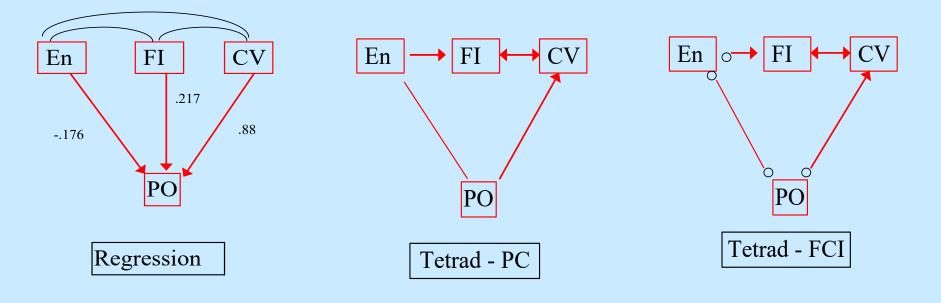

 $\cap A$

Theoretical Hypothesis

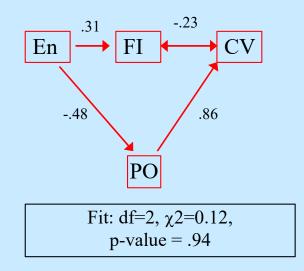
Tetrad Demo and Hands-on

- 1) Load charity.txt (tabular not covariance data)
- 2) Build graph of theoretical hypothesis
- 3) Build SEM PM from graph
- 4) Estimate PM, check results

Foreign Investment


Does Foreign Investment in 3rd World Countries inhibit Democracy?

Timberlake, M. and Williams, K. (1984). Dependence, political exclusion, and government repression: Some cross-national evidence. American Sociological Review 49, 141-146.


N = 72

- PO degree of political exclusivity
- CV lack of civil liberties
- EN energy consumption per capita (economic development)
- FI level of foreign investment

Case Study: Foreign Investment Alternative Models

There is no model with testable constraints (df > 0) that is not rejected by the data, in which FI has a positive effect on PO.

Tetrad Demo and Hands-on

- 1) Load tw.txt (this IS covariance data)
- 2) Do a regression
- 3) Build an alternative hypothesis, Graph SEM PM, SEM IM
- 4) Estimate PM, check results

Hands On Lead and IQ

- Lead: Lead concentration in baby teeth
- CIQ: child's IQ score at 7
- PIQ: Parent's average IQ
- MED: mother's education (years)
- NLB: number of live births prior to child
- MAB: mother's age at birth of child
- FAB: father's age at birth of child

Hands On Lead and IQ

- 1) Load leadiq1.tet
- 2) Specify different hypotheses, test the model fit on each
- See if you can find a model (without using search), that is not rejected by the data