Tetrad

1) Main website: <u>http://www.phil.cmu.edu/projects/tetrad/</u>

- 2) Download: http://www.phil.cmu.edu/projects/tetrad/current.html
 - a) JNLP version: <u>Tetrad 5.3.0</u>
 - b) Jar file: <u>Tetrad 5.3.0</u> (6/13/2016 Version 1)
- 3) Data files:

www.phil.cmu.edu/projects/tetrad_download/download/workshops/CCD/2016/Datasets/

Center for Causal Discovery:

Summer Short Course/Datathon - 2016

June 13-18, 2015

Carnegie Mellon University

Goals

- 1) Basic working knowledge of graphical causal models
- 2) Basic working knowledge of Tetrad V
- 3) Basic understanding of search algorithms
- 4) "Fully started" on using CCD algorithms/tools on real data, preferably your own.
- 5) Provide us with useful feedback on:
 - 1) The intro to graphical models/search with Tetrad segments
 - 2) The breakout sessions
 - 3) Follow up after the workshop: integrating CCD tools into your own research
- 6) Form community of researchers, users, and students interested in causal discovery in biomedical research

Monday: Basics of Graphical Causal Models, Tetrad

Morning: 9 AM – Noon, Baker Hall A51 : Giant Eagle Auditorium

- 1. Introduction
- 2. Representing/Modeling Causal Systems
 - a) Causal Graphs/Interventions
 - b) Parametric Models
 - c) Instantiated Models

Afternoon: 1:30 PM – 4 PM, Baker Hall A51 : Giant Eagle Auditorium

- 1. Estimation, Inference, and Model fit
- 2. Case Study: Charitable Giving

Dinner: On your own

Tuesday: Basics of Search, Break-out Sessions

Morning: 9 AM – Noon, Baker Hall A51 : Giant Eagle Auditorium

- 1. D-separation & Model Equivalence
- 2. Searching for Causal Systems

Afternoon: 1:30 PM – 4 PM, Baker Hall A51 \rightarrow breakout rooms

- 1. Break-out Session 1:
 - A. Brain/fMRI
 - B. Cancer
 - C. Lung Disease

Dinner: On your own

Wednesday: Latent Variables, etc., Break-out Sessions

Morning: 9 AM – Noon, Baker Hall A51 : Giant Eagle Auditorium

- 1. Latent Variable Model Search
- 2. Measurement

Afternoon: 1:30 PM – 3:30 PM, Baker Hall A51 \rightarrow breakout rooms

1. Break-out Session 2

Evening: O'Hara Student Center (Pitt), 2nd Floor Ballroom

- 1. 5:30 6:15 Poster Session
- 2. 6:15 8:00 Dinner (keynote speaker: Greg Cooper)

Thursday: Research Area Overviews, Break-out Sessions

Morning: 9 AM – Noon, Baker Hall A51 : Giant Eagle Auditorium

- 1. fMRI Brain
- 2. Cancer: Genomic Drivers
- 3. Lung Disease Pathways
- 4. Genetic Regulatory Network Search

Afternoon: 1:30 PM – 4 PM, Baker Hall A51 \rightarrow breakout rooms

1. Break-out Sessions 3

Dinner: On your own

Friday: Wrap-up, DataThon

Morning: 9 AM – Noon, Baker Hall A51 : Giant Eagle Auditorium

- 1. Break-out Group Reports
- 2. General Debrief Q&A
- 3. Evaluations

Afternoon: 1:30 PM – 4 PM, Giant Eagle Auditorium: Datathon

1:00 Intro

- 1:30 Team Introductions
- 2:00 Data Prep
- 3:00 Supercomputing Resources
- 3:30 6:00 Data Analysis

Dinner: 6-8 PM: Pizza

Saturday: DataThon

Morning: 9 AM – Noon, Baker Hall A51 : Giant Eagle Auditorium

- 1. 9 AM: Breakfast and Q&A
- 2. 10AM Noon: Data hacking

Noon – 1 PM: Lunch: on your own

Afternoon: 1:00 PM – 3 PM, Giant Eagle Auditorium

- 1:00 3:00: Data Hacking
- 3:00: Participant Presentations

Questions?

Causation and Statistics

Francis Bacon

Udny Yule

Charles Spearman

1900

1930

Galileo Galilei

1600

.....

1500

1960

1990

Causal Inference Requires More than Probability

Prediction from Observation *≠* Prediction from Intervention

P(Lung Cancer 1960 = y | Tar-stained fingers 1950 = no) \neq P(Lung Cancer 1960 = y | Tar-stained fingers 1950_{set} = no)

In general: $P(Y=y | X=x, Z=z) \neq P(Y=y | X_{set}=x, Z=z)$

Causal Prediction vs. Statistical Prediction:

Estimation vs. Search

Estimation (Potential Outcomes)

- Causal Question: Effect of Zidovudine on Survival among HIV-positive men (Hernan, et al., 2000)
- Problem: confounders (CD4 lymphocyte count) vary over time, and they are dependent on previous treatment with Zidovudine
- Estimation method discussed: marginal structural models
- Assumptions:
 - Treatment measured reliably
 - Measured covariates sufficient to capture major sources of confounding
 - Model of treatment given the past is accurate
- *Output*: Effect estimate with confidence intervals

Fundamental Problem: estimation/inference is conditional on the model

Estimation vs. Search

Search (Causal Graphical Models)

- *Causal Question*: which genes regulate flowering in Arbidopsis
- *Problem*: over 25,000 potential genes.
- *Method*: graphical model search
- Assumptions:
 - RNA microarray measurement reasonable proxy for gene expression
 - Causal Markov assumption
 - Etc.
- *Output*: Suggestions for follow-up experiments

Fundamental Problem: model space grows super-exponentially with the number of variables

Causal Search

Causal Search:

- 1. Find/compute *all* the causal models that are indistinguishable given background knowledge and data
- 2. Represent features common to all such models

Multiple Regression is often the *wrong* tool for Causal Search:

Example: Foreign Investment & Democracy

Foreign Investment

Does Foreign Investment in 3rd World Countries inhibit Democracy?

Timberlake, M. and Williams, K. (1984). Dependence, political exclusion, and government repression: Some cross-national evidence. American Sociological Review 49, 141-146.

N = 72

- PO degree of political exclusivity
- CV lack of civil liberties
- EN energy consumption per capita (economic development)
- FI level of foreign investment

Foreign Investment

Correlations

Case Study: Foreign Investment

Regression Results

SE	(.058)	(.059)	(.060)
t	3.941	-2.99	14.6
Ρ	.0002	.0044	.0000

Interpretation: foreign investment increases political repression

Case Study: Foreign Investment Alternative Models

There is no model with testable constraints (df > 0) that is not rejected by the data, in which FI has a positive effect on PO.

Outline

Representing/Modeling Causal Systems

- 1) Causal Graphs
- 2) Parametric Models
 - a) Bayes Nets
 - b) Structural Equation Models
 - c) Generalized SEMs

Causal Graphs

Causal Graph G = {V,E} Each edge $X \rightarrow Y$ represents a direct causal claim: X is a direct cause of Y relative to V

Causal Graphs

Tetrad: Complete Causal Modeling Tool

Tetrad

1) Main website: <u>http://www.phil.cmu.edu/projects/tetrad/</u>

- 2) Download: <u>http://www.phil.cmu.edu/projects/tetrad/current.html</u>
 - a) JNLP version: <u>Tetrad 5.3.0</u>
 - b) Jar file: <u>Tetrad 5.3.0</u> (6/10/2016 Version 1)
- 3) Data files:

www.phil.cmu.edu/projects/tetrad_download/download/workshops/CCD/2016/Datasets/

Tetrad Demo & Hands-On

Build and Save two acyclic causal graphs:

- 1) Build the Smoking graph picture above
- 2) Build your own graph with 4 variables

Modeling Ideal Interventions

Interventions on the Effect

Modeling Ideal Interventions

Interventions on the Cause

Model an ideal intervention by adding an "intervention" variable outside the original system as a direct cause of its target.

Intervention:

- hard intervention on both X1, X4
- Soft intervention on X3

Intervention:

- hard intervention on both X1, X4
- Soft intervention on X3

Intervention:

- hard intervention on X3
- Soft interventions on X6, X4

Post-Intervention Graph?

Parametric Models

Instantiated Models

The Joint Distribution Factors

According to the Causal Graph,

 $P(V) = \prod_{x \in V} \mathbf{P}(X \mid Direct _causes(X))$

P(S,YF,L) = P(S) P(YF | S) P(LC | S)

P(S) P(YF	S) P(LC	$ S \rangle = f(\theta)$
-----------	---------	---------------------------

All variables binary [0,1]: $\theta = \{\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \}$

$$P(S = 0) = \theta_1$$

$$P(S = 1) = 1 - \theta_1$$

$$P(YF = 0 \mid S = 0) = \theta_2$$

$$P(YF = 1 \mid S = 0) = 1 - \theta_2$$

$$P(YF = 0 \mid S = 1) = \theta_3$$

$$P(YF = 1 \mid S = 1) = 1 - \theta_3$$

$$P(LC = 0 | S = 0) = \theta_4$$

$$P(LC = 1 | S = 0) = 1 - \theta_4$$

$$P(LC = 0 | S = 1) = \theta_5$$

$$P(LC = 1 | S = 1) = 1 - \theta_5$$

The Joint Distribution Factors

According to the Causal Graph,

$$P(V) = \prod_{x \in V} \mathbf{P}(X \mid Direct _causes(X))$$

 $\mathsf{P}(\mathsf{S},\mathsf{YF},\mathsf{LC}) = \mathsf{P}(\mathsf{S}) \ \mathsf{P}(\mathsf{YF} \mid \mathsf{S}) \ \mathsf{P}(\mathsf{LC} \mid \mathsf{S}) = \mathsf{f}(\theta)$

All variables binary [0,1]: $\theta = \{\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \}$

 $P(S,YF, LC) = P(S) P(YF \mid S) P(LC \mid YF, S) = f(\theta)$ All variables binary [0,1]: $\theta = \{\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6}, \theta_{7}, \}$

The Joint Distribution Factors

According to the Causal Graph,

 $P(V) = \prod_{x \in V} \mathbf{P}(X \mid Direct_causes(X))$

P(S, YF, L) = P(S) P(YF | S) P(LC | S)

$$P(S = 0) = .7$$

$$P(S = 1) = .3$$

$$P(YF = 0 | S = 0) = .99$$

$$P(YF = 1 | S = 0) = .01$$

$$P(YF = 0 | S = 1) = .20$$

$$P(YF = 1 | S = 1) = .80$$

$$P(L = 0)$$

P(LC = 0 | S = 0) = .95 P(LC = 1 | S = 0) = .05 P(LC = 0 | S = 1) = .80P(LC = 1 | S = 1) = .20

P(S=1,YF=1, LC=1) = ?

The Joint Distribution Factors

According to the Causal Graph,

 $P(V) = \prod_{x \in V} \mathbf{P}(X \mid Direct_causes(X))$

P(S, YF, L) = P(S) P(YF | S) P(LC | S)

P(S = 0) = .7	
P(S = 1) = .3	
P(YF = 0 S = 0) = .99	P(LC = 0 S = 0) = .95
P(YF = 1 S = 0) = .01	P(LC = 1 S = 0) = .05
P(YF = 0 S = 1) = .20	P(LC = 0 S = 1) = .80
P(YF = 1 S = 1) = .80	P(LC = 1 S = 1) = .20

P(S=1,YF=1, LC=1) = P(S=1) P(YF=1 | S=1) P(LC=1 | S=1) P(S=1,YF=1, LC=1) = .3 * .80 * .20 = .048

Calculating the effect of a hard interventions

 $P_{\mathbf{m}}(YF,S,L) = P(S) P(YF|\mathbf{I}) P(L|S)$

Calculating the effect of a hard intervention

Calculating the effect of a soft intervention

 $P_{m}(YF,S,L) = P(S)P(YF|S, Soft) P(L|S)$

Tetrad Demo & Hands-On

- 1) Use the DAG you built for Smoking, YF, and LC
- Define the Bayes PM (# and values of categories for each variable)
- 3) Attach a Bayes IM to the Bayes PM
- 4) Fill in the Conditional Probability Tables (make the values plausible).

Updating

Tetrad Demo

- 1) Use the IM just built of Smoking, YF, LC
- 2) Update LC on evidence: YF = 1
- 3) Update LC on evidence: YF $_{set} = 1$

Structural Equation Models

Structural Equations For each variable $X \in V$, an *assignment* equation:

 $X := f_X(\text{immediate-causes}(X), \varepsilon_X)$

Exogenous Distribution: Joint distribution over the exogenous vars : P(ε)

Linear Structural Equation Models

Equations:

Education := $\varepsilon_{Education}$ Income := β_1 Education + ε_{income} Longevity := β_2 Education + $\varepsilon_{Longevity}$

Structural Equation Model:

 $\mathbf{V} = \mathbf{B}\mathbf{V} + \mathbf{E}$

Exogenous Distribution:

- $\mathsf{P}(\epsilon_{ed},\,\epsilon_{\text{Income}},\epsilon_{\text{Income}}\,)$
 - $\forall i \neq j \; \epsilon_i \perp \epsilon_j \;$ (pairwise independence)
 - no variance is zero

E.g.

$$(\varepsilon_{ed}, \varepsilon_{Income}, \varepsilon_{Income}) \sim N(0, \Sigma^2) - \Sigma^2 diagonal,$$

- no variance is zero

Extra Slides

A Few Causal Discovery Highlights

Autism

Catherine Hanson, Rutgers

ASD vs. NT

Usual Approach: Search for differential recruitment of brain regions

ASD vs. NT

Causal Modeling Approach: Examine connectivity of ROIs

- Face processing network
- Theory of Mind network
- Action understanding network

Results

What was Learned

face processing: ASD ≈ NT

Theory of Mind: ASD ≠ NT

action understanding: ASD ≠ NT when faces involved

Genetic Regulatory Networks

Arbidopsis

Marloes Maathuis ZTH (Zurich)

Genetic Regulatory Networks

Micro-array data ~25,000 variables

Greenhouse experiments on flowering time

Genetic Regulatory Networks

Which genes affect flowering time in Arabidopsis thaliana? (Stekhoven et al., *Bioinformatics*, 2012)

- ~25,000 genes
- Modification of PC (stability)
- Among 25 genes in final ranking:
 - 5 known regulators of flowering
 - 20 remaining genes:
 - For 13 of 20, seeds available
 - 9 of 13 yielded replicates
 - 4 of 9 affected flowering time
- Other techniques are little better than chance

Other Applications

- Educational Research:
 - Online Courses,
 - MOOCs (the "Doer" effect)
 - Cog. Tutors
- Economics:
 - Causes of Meat Prices,
 - Effects of International Trade
- Lead and IQ
- Stress, Depression, Religiosity
- Climate Change Modeling
- The Effects of Welfare Reform
- Etc. !