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Outline

Models = Data
1) Representing/Modeling Causal Systems
2) Estimation and Model fit

3) Hands on with Real Data

Models € Data
1) Bridge Principles: Markov Axiom and D-separation
2) Model Equivalence

3) Model Search
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Predictions

e.g., Conditional Independence
X ||_Z|Y

vx,y,z P(X=x,Z=z|Y=y) =

PX=x|Y=y) P(Z=z | Y=y)



Bridge Principles:
Acyclic Causal Graph over V = Constraints on P(V)

Weak Causal Markov Assumption

V,V, causally disconnected = V; ||_V,

V,,V, causally disconnected <
I. V, not a cause of V,, and
li. V, not an effect of V,, and

li. No common cause Z of V; and V,




Bridge Principles:
Acyclic Causal Graph over V = Constraints on P(V)

Weak Causal Markov Assumption Determinism

V,,V, causally disconnected = V, ||V, (Structural Equations)

)

If G is a causal graph, and P a probability distribution over the variables in

Causal Markov Axiom

G, then in <G,P> satisfy the Markov Axiom iff;

every variable V is independent of its non-effects,

conditional on its immediate causes.



Bridge Principles:
Acyclic Causal Graph over V = Constraints on P(V)

Causal Markov Axiom Acyclicity

N7

d-separation criterion

Z

Causal Graph Graphical Independence Oracle

Z_|l_Yy | X Z_|l_Yz | X

Z Yy [ XY, Z_|I_Y2 [ XYy
Y, Y _[l_Yz | X Y _ll_ Y2 | X2




Equivalence Classes

Equivalence:
Independence Equivalence:M; F(X _[_Y|2) < M, F(X_|_Y|2)

Distribution Equivalence: v, 36, M,(6,) = M,(6,), and vice versa)

Independence (d-separation equivalence)
DAGs : Patterns
PAGs : Partial Ancestral Graphs
Intervention Equivalence Classes

Measurement Model Equivalence Classes
Linear Non-Gaussian Model Equivalence Classes
Etc.



d-separation/Independence Equivalence

D-separation Equivalence Theorem (Verma and Pearl, 1988)

Two acyclic graphs over the same set of variables are
d-separation equivalent iff they have:

the same adjacencies
the same unshielded colliders



Colliders

v

Y: Collider Y: Non-Collider
7 X Z X Z X
\ / N4 N/ N
Y Y Y
Shielded Unshielded
X > 7 X 7
NV NV




d-separation/Independence Equivalence

D-separation Equivalence Theorem (Verma and Pearl, 1988)

Two acyclic graphs over the same set of variables are
d-separation equivalent iff they have:

the same adjacencies
the same unshielded colliders

Exercises
Create a 4-variable DAG
Specify a 1-edge variant that is equivalent
Specify a 1-edge variant that is not

Show with IM and Estimators that you have succeeded in
steps 2 and 3

10



Independence Equivalence Classes:
Patterns & PAGS

Patterns (Verma and Pearl, 1990): graphical

representation of d-separation equivalence class
(among models with no latent common causes)

PAGs: (Richardson 1994) graphical representation of a d-
separation equivalence class that includes models with
latent common causes and sample selection bias that are
d-separation equivalent over a set of measured variables X

11



Patterns

Possible Edges
X1 X5
X1 | — | X

12




Patterns: What the Edges Mean

X1 and X, are not adjacent in any

A %2 | member of the equivalence class
X1 — X5 (X1 Is a cause of X»)

Xi > 1 X2 | in every member of the
equivalence class.
X X5 1IN some members of th

X | — [x 1 — X5 1n some members of the

equivalence class, and X, — X;in
others.

13



Patterns

Pattern

14




Patterns

Specify all the causal graphs represented by the Pattern:

1) m/m\xz 2) /m\
S St

olp) Cals

15



Patterns

Specify all the causal graphs represented by the Pattern:

) m\n 2) 7 ,\H
Ny NN

N
S .
X3 X2 X1\x2
S D
X3 X2 m\xz
vy 1 RPN



Tetrad Demo: Generating Patterns

A\ untitled] tet - Tetrad 5.1.0-6 ==

File Edit Logging Template Window Help

A\ untitled1.tet :

+
*
Graph _'
Graph1

Graph = DAG
Manipulation \
Comparison _'
Parametric GraphManip1

Model | Pattern from Dag

Instantiated
Model

Data

Data
Manipulation

4]

17



Causal Search Spaces are Large

N

N
Directed Acyclic Graphs (between 2(2) and 3(2) ) ... (N) is O(N?)

2

Directed Graphs (4@) )

Markov Equivalence Class of DAGs (patterns) : DAGs / 3.7

Markov Equivalence Class of DAGs with confounders (roughly PAGs) ??
Equivalence Class of “Linear Measurement Models” ??

Equivalence Class of Directed Graphs with confounders

 Relative to: Experimental Setup V = {Obs, Manip} ??

18



Causal Search as a Method

Causal Knowledge

e.d.,
Markov Equivalence Class of Causal Graphs

4/

Discovery Algorithm

7\

Experimental Setup(V)

« V ={0Obs, Manip}
P(Manip)

Mamp(v)

Background Knowledge General Assumptions
- Markov,

- Salary * Gender - Faithfulness
- Linearity

- Infection - Symptoms - Gaussianity
- Acyclicity

Statistical
Inference

Data

19



Markov Equivalence
Class of Causal Graphs

(Pattern)

X X

—_

T

1
X j— X2 |—>

Background Knowledge

X, prior in time to X,

For Example

Passive Observation

P(V) :

X1 || X3 | Xz

e

\ Discovery

Algorithm

General Assumptions

Markov, Faithfulness, No
latents, no cycles,

20
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Statistical
Inference




Faithfulness

Constraints on a probability distribution P generated by a
causal structure G hold for all parameterizations of G.

Tax Rate

1)

e

Economy

Tax
Revenues

=

Revenues := g, Rate + g,Economy + &,

Economy = fg;Rate + &,

Faithfulness:

,31 7 '163182
,82 7 '183181

21



Faithfulness

Constraints on a probability distribution P generated by a causal structure
G hold for all parameterizations of G.

All and only the constraints that hold in P(V) are entailed by the causal
structure G(V), rather than lower dimensional surfaces in the parameter
space.

Causal Markov Axiom:
X and Y causally disconnected |= X || Y

Faithfulness:
X and Y causally disconnected =| X |l_Y

22



Challenges to Faithfulness

Gene A -
\ Gene B

+ / )

Protein 24
Air
Temp \ Core Body
Temp
Homeostatic

Regulator

By evolutionary design:

Gene A _||_ Protein 24

By evolutionary design:

Air temp _||_ Core Body Temp

Sampling Rate vs. Equilibration rate

23



Search Methods

Constraint Based Searches
PC, FCI
Pointwise, but not uniformly consistent

Scoring Searches
GES, FGS
Scores: BIC, AIC, etc.
Search: Hill Climb, Genetic Alg., Simulated Annealing
Difficult to extend to latent variable models
Meek and Chickering Greedy Equivalence Class (GES)
Pointwise, but not uniformly consistent

Latent Variable Psychometric Model Search
BPC, MIMbuild, etc.

Linear non-Gaussian models (Lingam)
Models with cycles
And more!!!

24



Score Based Search

Equivalence Class of
Causal Graphs

Xi Xy |— X3

Rew="10 —

Xy

Equivalence Class of
Causal Graphs

X

y

Model Score

L X,
/ Model Scores:

AIC, BIC, etc.

Equivalence Class of

Causal Graphs

Background Knowledge

e.g., X, priorintime to X,

25



(X[ Bk Bk

Graph1 Graph2 Graph3

Tetrad Demo

& & &
and Hands On i Y 1
PMA1 PM2 PM3
SEM PM SEM PM SEM PM
1.
XS] aallau it FF e
M1 Estimator1 Estimator2 Estimator3
SEM 1M SEM Est SEM Est SEM Est
®oT
Data1
SEM Data
b e A B
-’-rlﬂ
Search1
GES
E T i1
IMEANED
_’
Estimatord
SEM Est GraphManip1
Dag in Pattern
B K
P4
SEM PM




1)
2)

3)

4)

5)
6)

Tetrad Demo and Hands-on

Go to “estimation1.tet”

Add Search node (from Datal)
- Choose and execute one of the

“Pattern searches”

Add a “Graph Manipulation” node to search

result: “choose Dag in Pattern”

Add a PM to GraphManip .

15
.- >
T TP L= Y

Estimator4

Estimate the PM on the data sewes

Compare model-fit to model fit for true mode

Data1
SEM Data

X ¥
-

X|=Y
Y= X

Search1
GES

Y
XY

GraphManip1
Dag in Pattern

|
X 5y
PM4
SEM PM



1)
2)
3)
4)

Backround Knowledge
Tetrad Demo and Hands-on

Create new session
Select “Search from Simulated Data” from Template menu
Build graph below, PM, IM, and generate sample data N=1,000.

Execute PC search, o = .05

Graph1 (Directed Acyclic Graph)
File Edit Graph Layout

1| Il
Double click variable to change name.

e A S 3 S
HE
—— -
Data1 Search1
SEM Data PC

Save Cancel

Updater |

28



1)
2)
3)
4)

Backround Knowledge
Tetrad Demo and Hands-on

Add “Knowledge” node
Create “Tiers” as shown below.
Execute PC search again, o = .05

Compare results (Search?2) to previous search (Searchl)

(X[ Y]
Graph1
DAG
Knowledge1 (Tiers and Edges) ;
Tiers | Other Groups Edges | Text
Not in tier: #Tiers = 4= PM1
SEM PM
Tier 1 [ Forbi™]
[x1] [x3] [X[S]Y]
1
SEM IM
Tier 2 []Forbi=
| 4 MY +*
Tier 3 ] Forby - *1
# o [RIH[Y] Data1 rc
@ BRI SEM Data B
= Knowledge1
<] ] D] | === \
o o
Use shift key to select multiple items. "—-
Search2
| Save | | Cancel | Ho model

29



Backround Knowledge
Direct and Indirect Consequences

Hie EOIL Graph Layout

-l

True Graph

] knowledg... =@ [ e

Edges | Text
Other Groups
Tiers

Notin tier# Tiers = l:

Tier 1

[»

[xa] (]

Tier 2

[x2][xa]

mier 3

[x5]

llph  Layout endence Graph Layout

Pattern

0.0500

Pattern

Calc Stats

| 1

Prevent Cycles

e that some
ay take a
complete.

PC Output

Background Knowledge

PC Output

No Background Knowledge

30



Backround Knowledge
Direct and Indirect Consequences

Hle Eam Graph Layout I_Il‘
€orm S s
X(¥] / True Graph
+LAY

T I—.
+(LT X2 X4

Direct Consequence

Of Background Knowledge eh Layout endence Graph Layout
P q (—‘Pattern Pattern
- 0.0500
Not in tier# Tiers = | | B *1 X3
e
Tier 1 5
[x1][x3] 1 Calc Stats v
O Prevent Cycles
Tier 2 ]
2 that some
[x2] ay take a
complete. X5
Tier 3 =
[x] -

PC Output PC Output

Indirect Consequence

Background Knowledge No Background Knowledge

Of Background Knowledge

31



1)
2)
3)

4)

S)

6)

7)
8)

Charitable Giving (Search)

Load in charity data

Add search node

Enter Background Knowledge:

. Tangibility is exogenous

. Amount Donated is endogenous only
. Tangibility = Imaginability is required
Choose and execute one of the

“Pattern searches”

Add a “Graph Manipulation” node to

search result: “choose Dag in Pattern”

Add a PM to GraphManip

Estimate the PM on the data

Compare model-fit to hypothetical model

o

Charity_Data \
Data ®= v [x][v]
[+ []

Knowledge1
Tiers-Edges

A 1,

fl=47] BT
Estimatord [el-+[x]
SEM Est Search1

T GES
X[ Y] /

PM1 Y [ X[ Y]

SEM PM GraphManip1
Dag in Pattern

32



1)

2)

3)

4)

S)

6)
7)

Lead-1Q Search

Load in lead-iq data
Add search node

Enter Background Knowledge:
. Cig is endogenous
Choose and execute one of the

“Pattern searches”

Add a “Graph Manipulation” node to

search result: “choose Dag in Pattern’
Add a PM to GraphManip

Estimate the PM on the data

33



Extra Slides:
D-separation

34



D-separation

Undirected Paths

Colliders vs. Non-Colliders

35



D-separation: Undirected Paths

V
Xx— —
\ W—>Y

Undirected Path from X to Y;

any sequence of edges beginning with X and ending at Y in which no
edge repeats

Paths from X to Y:

36



D-separation: Undirected Paths

V
X —
\\ \N——»Y

Undirected Path from X to Y;

any sequence of edges beginning with X and ending at Y in which no
edge repeats

Paths from X to Y:

DX EVDY

37



D-separation: Undirected Paths

V
Xx— —
\\ \N——»Y

Undirected Path from X to Y;

any sequence of edges beginning with X and ending at Y in which no
edge repeats

Paths from X to Y:

DXEVDY

XY

38



D-separation: Undirected Paths

V
Xx— —
\ W—>Y

Undirected Path from X to Y;

any sequence of edges beginning with X and ending at Y in which no
edge repeats

Paths from X to Y:

DX EVY
)X >Y

IXD>ZLEWSY

39



D-separation: Undirected Paths

V
Xx— —
\ W—>Y

Undirected Path from X to Y;

any sequence of edges beginning with X and ending at Y in which no
edge repeats

Paths from X to Y:

DX €V S Y HXD>Z1EWSUSY

)X S>Y

HXDZLEWSY

40



D-separation: Undirected Paths

V
Xx— —
\ W—>Y

Undirected Path from X to Y;

any sequence of edges beginning with X and ending at Y in which no
edge repeats

Paths from X to Y:

DX E€VSY HX2>2Z1<W2U2Y

2)X > Y 55 X=2>21>22>U>Y

HXDZLEWSY

41



D-separation: Undirected Paths

V
Xx— —
\ W—>Y

Undirected Path from X to Y;

any sequence of edges beginning with X and ending at Y in which no
edge repeats

Paths from X to Y:

DX E€VSY HX2>2Z1<W2U2Y

2)X > Y 5X=2>21>22>U>Y

NXDZLEWSDY 6) X221 2>22>U<CW->2Y

42



D-separation: Undirected Paths

V
Xx— —
\ W—>Y

Undirected Path from X to Y;

any sequence of edges beginning with X and ending at Y in which no
edge repeats

llllegal Path from X to Y:

DXEC|ZL 2> 22> UECEW2Z1 > 222 U2 Y




Colliders

v

Y: Collider Y: Non-Collider
7 X Z X Z X
\ / N4 N/ N
Y Y Y
Shielded Unshielded
X > 7 X 7
NV NV

44



A variable is or Is not a collider on a path

Variable: U

Paths from Xto Y
X2>Z2Z1<W->U=>Y

Paths on which U is a non-collider:

45



Colliders — a variable on a path

V
Xx— —
\ W—>Y

[

Variable: U

Paths from Xto Y
X2>Z2Z1<W->U>Y

Paths on which U is a non-collider:
X=>Z1>22>U=>Y

Path on which U is a collider:

46



Colliders — a variable on a path

Variable: U

Paths from Xto Y
X2>Z2Z1<W->U>Y

Paths on which U is a non-collider:
X>Z21>722>U>Y

Path on which U is a collider: X2Z412>Z222U<CW=Y

47



Conditioning on Colliders Conditioning on Non-Colliders

iInduce Association screen-off Association
Gas Battery EXp Symptoms
[y;n] [live, dead] [y.n] [yes, no]
Car Starts Infection
ly.n] [y.n]
Gas _||_ Battery Exp:rg Symptoms
Gas _)\ Battery | Car starts = no Exp || Symptoms | Infection

48



D-separation

X is d-separated from Y by Z in G iff
Every undirected path between X and Y in G is inactive relative to Z

An undirected path is inactive relative to Z iff
any node on the path is inactive relative to Z

A node N (on a path) is inactive A node N (on a path) is active
relative to Z iff relative to Z iff

a) N is a non-collider in Z, or a) N is a non-collider not in Z, or

b) N is a collider that is not in Z, b) N is a collider that is in Z,
and has no descendant in Z or has a descendant in Z

X d-sep Y relativeto Z =9 ?

/ v \ Undirected Paths between X, Y:

«— — Y
W 1) X>Z, € WDY

Z, 2) X€VDY

49



D-separation

X is d-separated from Y by Z in G iff
Every undirected path between X and Y in G is inactive relative to Z

An undirected path is inactive relative to Z iff
any node on the path is inactive relative to Z

A node N (on a path) is inactive A node N (on a path) is active
relative to Z iff relative to Z iff

a) N is a non-collider in Z, or a) N is a non-collider not in Z, or

b) N is a collider that is not in Z, b) N is a collider that is in Z,
and has no descendant in Z or has a descendant in Z

X d-sep Y relativeto Z =9 ?

/V\ X>Z, €W->>Y active? No

Zy W Y Z1 active? No
l W active? Yes

50



D-separation

X is d-separated from Y by Z in G iff
Every undirected path between X and Y in G is inactive relative to Z

An undirected path is inactive relative to Z iff
any node on the path is inactive relative to Z

A node N (on a path) is inactive A node N (on a path) is active
relative to Z iff relative to Z iff

a) N is a non-collider in Z, or a) N is a non-collider not in Z, or

b) N is a collider that is not in Z, b) N is a collider that is in Z,
and has no descendant in Z or has a descendant in Z

X d-sep Y relativetoZ=2 ? No

/V\ X<V->Y active?

W Y V active? Yes

Yes

o1



D-separation

X is d-separated from Y by Z in G iff

Every undirected path between X and Y in G is inactive relative to Z

An undirected path is inactive relative to Z iff
any node on the path is inactive relative to Z

A node N is inactive relative to Z iff
a) N is a non-collider in Z, or

b) N is a collider that is not in Z,
and has no descendant in Z

/V\

X — q < W » Y

Z
Z

2

A node N (on a path) is active
relative to Z iff
a) N is a non-collider not in Z, or

b) N is a collider that is in Z,
or has a descendant in Z

X d-sep Y relativetoZ= {W, Z,}?

Undirected Paths between X, Y:

1) X>Z, € WY

) X€VDY



D-separation

X is d-separated from Y by Z in G iff

Every undirected path between X and Y in G is inactive relative to Z

An undirected path is inactive relative to Z iff
any node on the path is inactive relative to Z

A node N is inactive relative to Z iff
a) N is a non-collider in Z, or

b) N is a collider that is not in Z,
and has no descendant in Z

/V\

X —— 7, < W > Y

Z
Z

2

A node N (on a path) is active
relative to Z iff
a) N is a non-collider not in Z, or

b) N is a collider that is in Z,
or has a descendant in Z

X d-sep Y relativetoZ= {W,Z,}? No

1) X>Z, € WY

Z1 active? Yes

W active? No



D-separation

/ZZ\ X d-sep Y given @ ? No

X —— Z, ——Y X d-sep Y given{Z;}? No

1( I X d-sep Z, given & ? No
7, - 7 X d-sep Z, given {Z,} ? No

54



D-separation + Intervention:
Statistical Control # Experimental Control

Question: Does X, directly cause X;? How to find out?

Truth: No, X, mediates _
Experimentally control for X,

X |2 Xo [—p| X3

A
|

55



D-separation + Intervention:

Statistical Control # Experimental Control

@ Experimentally control for X,
) \A X5 d-sep X, by {X,set} ??7?
X1 X X _>|- X3
/ Yes: X5 |l X, | X,(set)
I
@ Statistically control for X,

Y X, d-sep X, by {X,} 227

No! X5 TN X | X,

56



Extra Slides:
Constraint based search

o7



Constraint-based Search for Patterns

1) Adjacency phase

2) Orientation phase

58



Constraint-based Search for Patterns:
Adjacency phase

X and Y are not adjacent if they are independent
conditional on any subset that doesn’t X and Y

1) Adjacency
* Begin with a fully connected undirected graph

* Remove adjacency X-Y if X || Y |anysetS



Causal
Graph

X1

X3—» X4
X2

Inde pendcie s
X1 1L x2
X1 1L X4]| {X3}
x2 1l X4| {X3}

Begin with:
X3 X4
//
X2
From X1
~ —
X1 1L X2 X3 X4
From X1
X1 1L x4| {X3 X3 X4
| {X3} //
X2
From
X1
X2 1l X4| {X3} N
X3 X4

X2



Constraint-based Search for Patterns:
Orientation phase

2) Orientation

« Collider test:
Find triples X — Y — Z, orient according to whether the set

that separated X-Z contains Y

« Away from collider test:
Find triples X = Y — Z, orient Y — Z connection via collider

test

* Repeat until no further orientations

* Apply Meek Rules

61



Search: Orientation

Patterns
Y Unshielded Test: X || _Z|S,isYeS
X Y Z

cmm/ \ Non-Collider

X — Y «— 7




Search: Orientation

Away from Collider

Test Conditions 1) X, - X, adjacent, and into Xs.

2) X, - X5 adjacent

X1 ~ - X3 3) X, - X5 not adjacent
Xo
Test X, || X5 |S,X,e S
o ves
Xl X3 Xl X
2 X2




Search: Orientation

X ~__
After Adjacency Phase X X,
X,
2
Collider Test: X1 — X3 — X2 X, ~ . .
X1 || X2 3 4
<, =
Away from Collider Test:
X1 2X3-X4 X2 2>X3-X4 X,
X1 || X4|X3 X3 > X4
Xo

X2 || X4|X3



Away from Collider Power!

X — Xy — X3 Xi L X5 [8,X,€8

W

Xi— X, — X5

X, — X5 oriented as X, 2 X,

Why does this test also show that X, and X, are not confounded?

C
X X, — X VAR
XX, —* X5

Xi |- X518, X,e8 X X5 ]S, X,eS,Ceg S



