Center for Causal Discovery

Day 3: Search Continued

June 15, 2015

Carnegie Mellon University

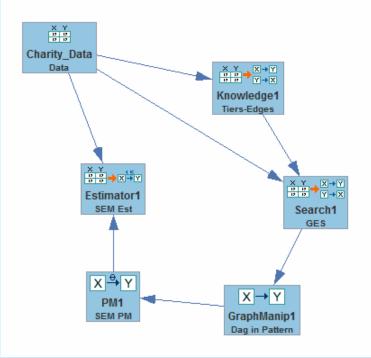
Outline

Models ← Data

- 1) Bridge Principles: Markov Axiom and D-separation
- 2) Model Equivalence
- 3) Model Search
 - A. For Patterns
 - B. For PAGs
- 4) Multiple Regression vs. Model Search
- 5) Measurement Issues and Latent Variables

Search Results?

- 1) Charitable Giving
- 2) Lead and IQ
- 3) Timberlake and Williams



Constraint-based Search for Patterns

1) Adjacency phase

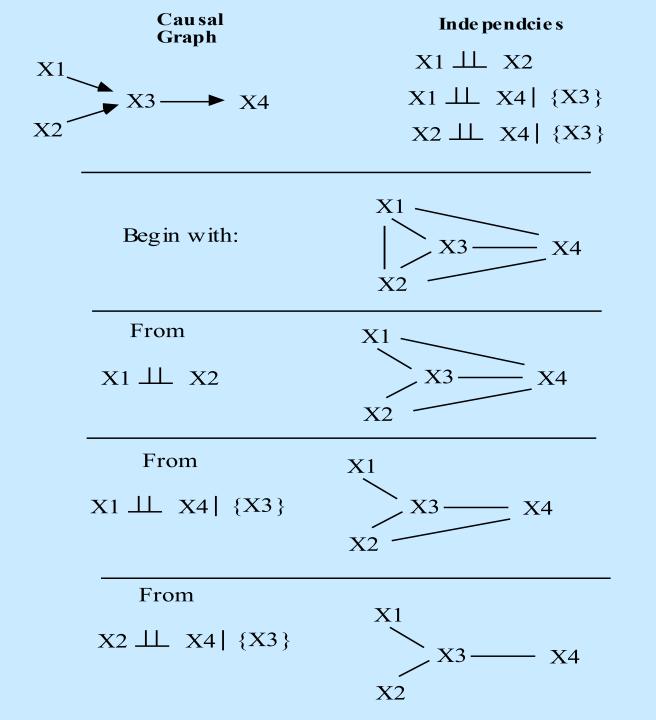
2) Orientation phase

Constraint-based Search for Patterns: Adjacency phase

X and Y are <u>not adjacent</u> if they are independent conditional on <u>any</u> subset that doesn't X and Y

1) Adjacency

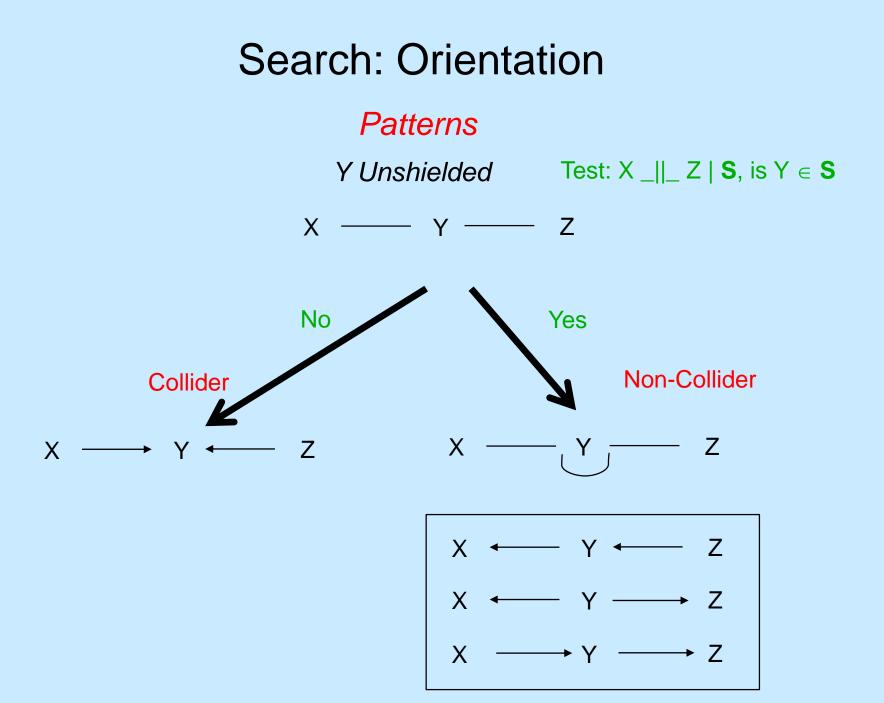
- Begin with a fully connected undirected graph
- Remove adjacency X-Y if X _||_ Y | any set S



Constraint-based Search for Patterns: Orientation phase

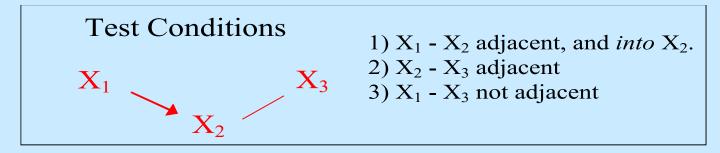
2) Orientation

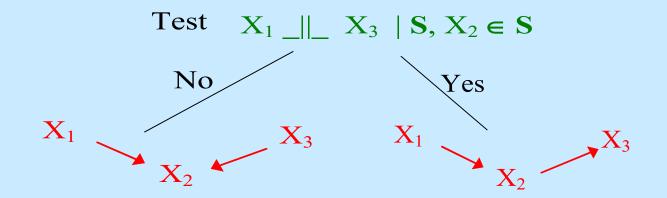
- Collider test: Find triples X – Y – Z, orient according to whether the set that separated X-Z contains Y
- Away from collider test: Find triples X → Y – Z, orient Y – Z connection via collider test
- Repeat until no further orientations
- Apply Meek Rules



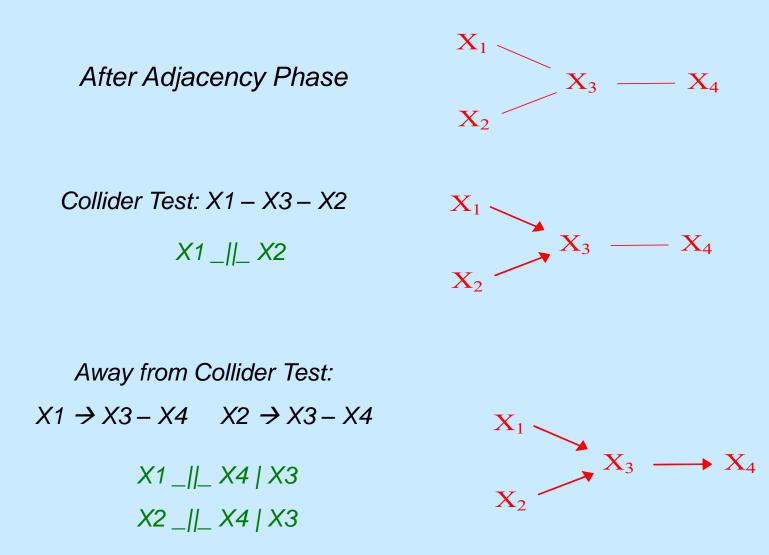
Search: Orientation

Away from Collider





Search: Orientation



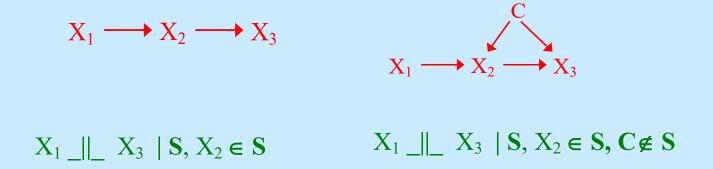
Away from Collider Power!

$$X_{1} \longrightarrow X_{2} \longrightarrow X_{3} \qquad X_{1} \parallel X_{3} \mid \mathbf{S}, X_{2} \in \mathbf{S}$$

$$X_{1} \longrightarrow X_{2} \longrightarrow X_{3}$$

 $X_2 - X_3$ oriented as $X_2 \rightarrow X_3$

Why does this test also show that X_2 and X_3 are not confounded?

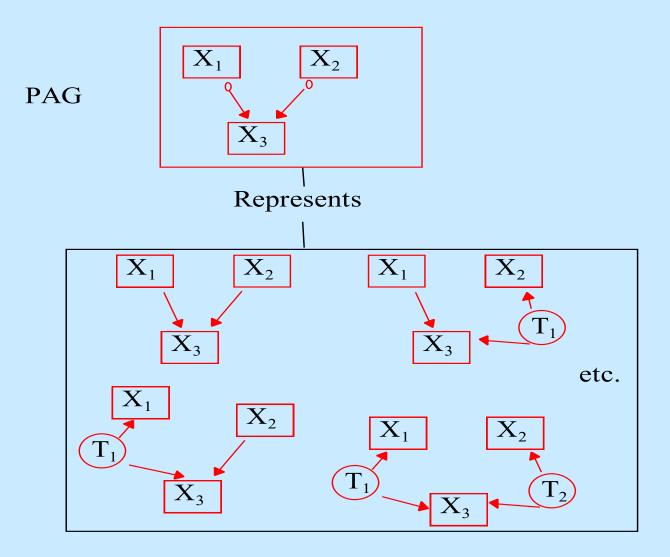


Independence Equivalence Classes: Patterns & PAGs

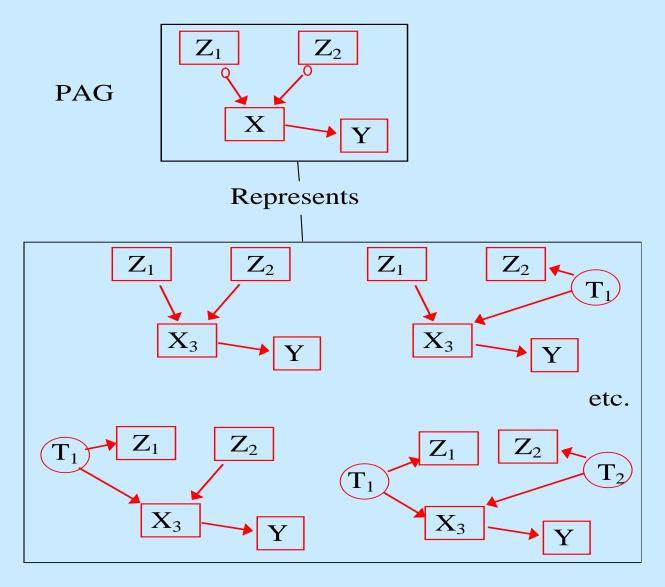
 <u>Patterns</u> (Verma and Pearl, 1990): graphical representation of d-separation equivalence among models with no latent common causes

 <u>PAGs</u>: (Richardson 1994) graphical representation of a d-separation equivalence class that includes models with latent common causes and sample selection bias that are d-separation equivalent over a set of measured variables X

PAGs: Partial Ancestral Graphs



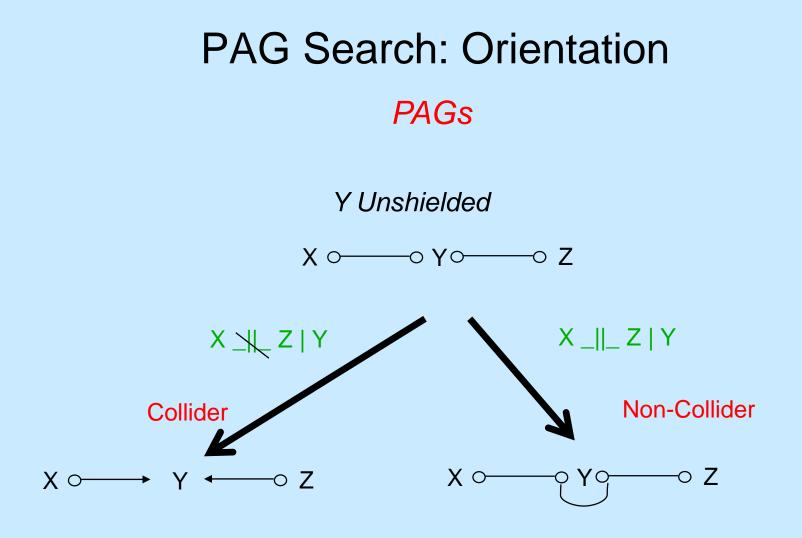
PAGs: Partial Ancestral Graphs



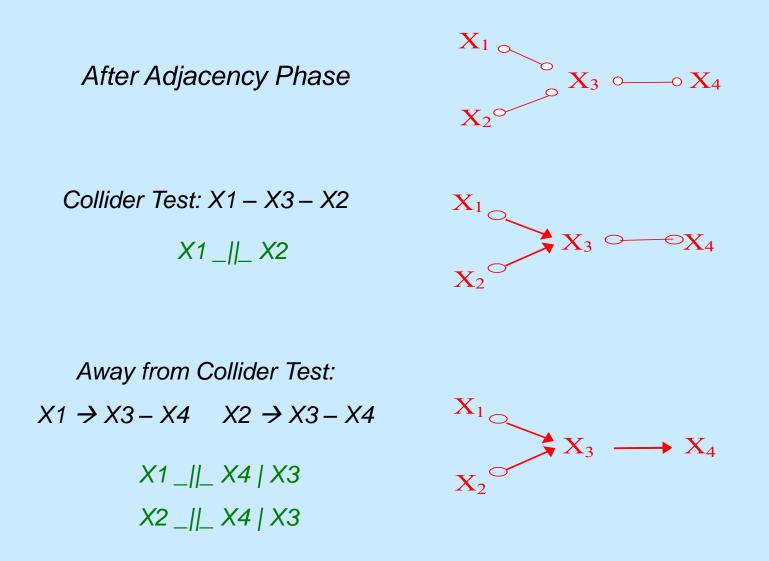
PAGs: Partial Ancestral Graphs

What PAG edges mean.

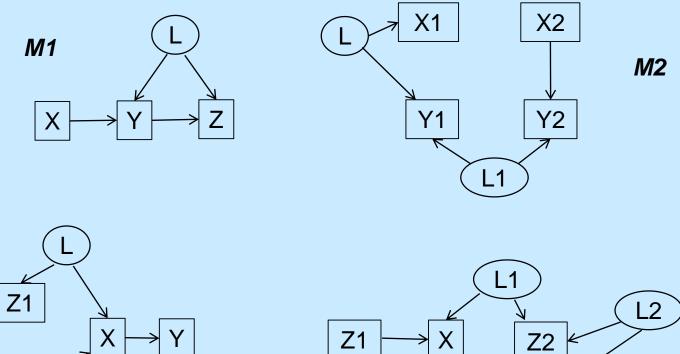




PAG Search: Orientation



Interesting Cases



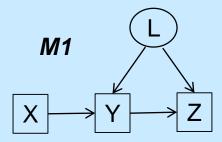
_____ M3

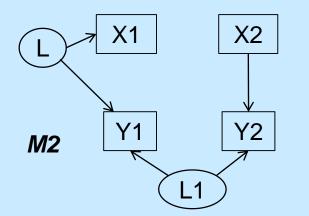
Z2

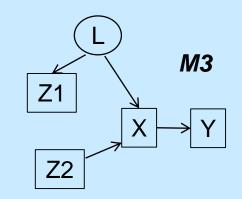
 $Z1 \rightarrow X \qquad Z2 \qquad L2$ Y = M4

Tetrad Demo and Hands-on

- 1) Create new session
- 2) Select "Search from Simulated Data" from Template menu
- 3) Build graphs for M1, M2, M3 "interesting cases", parameterize, instantiate, and generate sample data N=1,000.
- 4) Execute PC search, α = .05
- 5) Execute FCI search, $\alpha = .05$







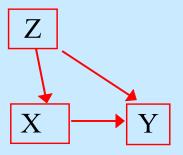
Regression & Causal Inference

Regression & Causal Inference

Typical (non-experimental) strategy:

1. Establish a prima facie case (X associated with Y)

But, omitted variable bias



- 2. So, identifiy and measure potential confounders Z:
 - a) prior to X,
 - b) associated with X,
 - c) associated with Y

3. Statistically adjust for **Z** (multiple regression)

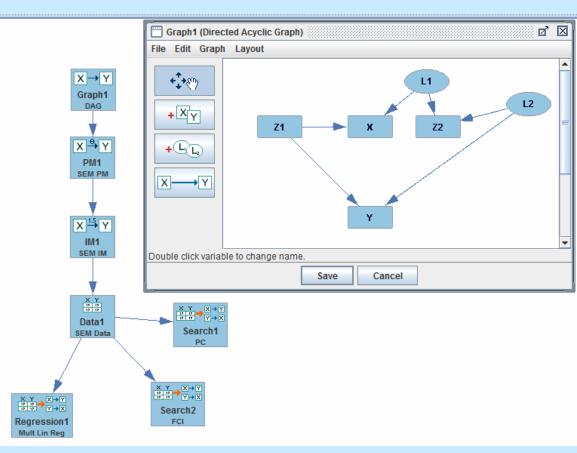
Regression & Causal Inference

Multiple regression or any similar strategy is provably unreliable for causal inference regarding X → Y, with covariates Z, unless:

- X truly prior to Y
- X, Z, and Y are causally sufficient (no confounding)

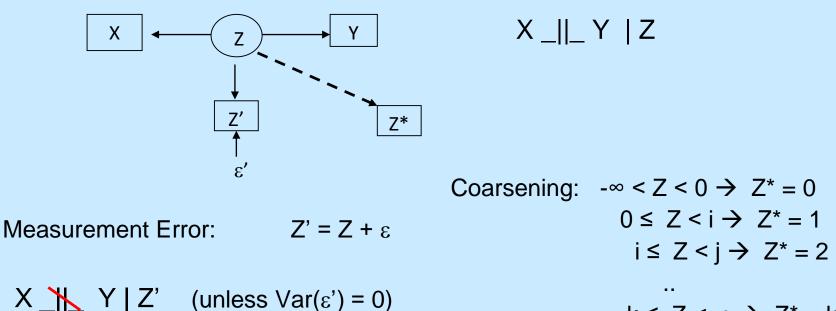
Tetrad Demo and Hands-on

- 1) Create new session
- 2) Select "Search from Simulated Data" from Template menu
- 3) Build a graph for M4 "interesting cases", parameterize as SEM, instantiate, and generate sample data N=1,000.
- 4) Execute PC search, α = .05
- 5) Execute FCI search, $\alpha = .05$



Measurement

Measurement Error and Coarsening Endanger conditional Independence!

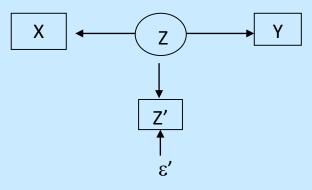


 $\mathsf{k} \leq \mathsf{Z} < \infty \rightarrow \mathsf{Z}^* = \mathsf{k}$

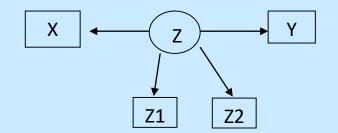
X Y Z* (almost always)

Strategies

- 1. Parameterize measurement error:
- Sensitivity Analysis
- Bayesian Analysis
- Bounds

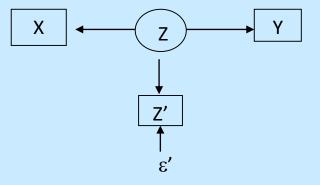


2. Multiple Indicators:

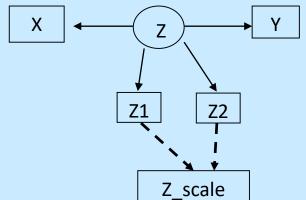


Strategies

- 1. Parameterize measurement error:
- Sensitivity Analysis
- Bayesian Analysis
- Bounds

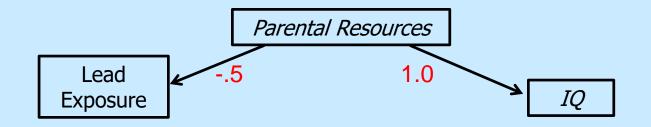


- 2. Multiple Indicators:
- Scales



X Y Z_scale

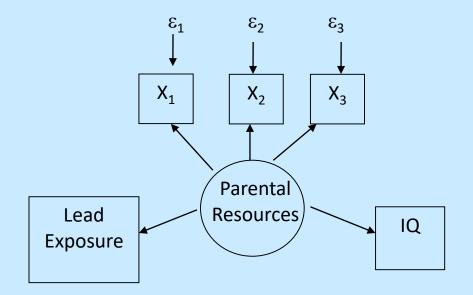
Psuedorandom sample: N = 2,000



Regression of IQ on Lead, PR

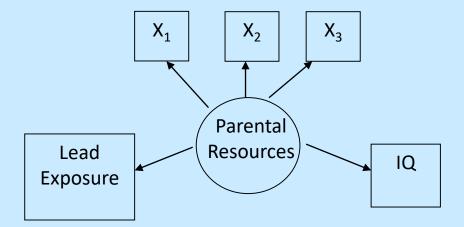
Independent Variable	Coefficient Estimate	p-value
PR	0.98	0.000
Lead	-0.088	0.378

Multiple Measures of the Confounder



 $X_{1} := \gamma_{1}^{*} \text{ Parental Resources} + \varepsilon_{1}$ $X_{2} := \gamma_{2}^{*} \text{ Parental Resources} + \varepsilon_{2}$ $X_{3} := \gamma_{3}^{*} \text{ Parental Resources} + \varepsilon_{3}$

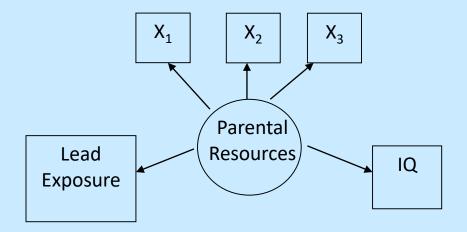
Scales don't preserve conditional independence



$$PR_Scale = (X_1 + X_2 + X_3) / 3$$

Independent Variable	Coefficient Estimate	p-value
PR_scale	0.290	0.000
Lead	-0.423	0.000

Indicators Don't Preserve Conditional Independence



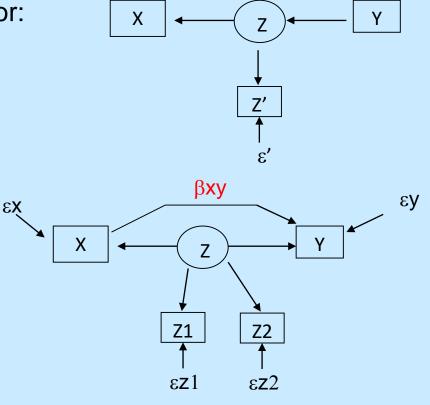
Regress IQ on: Lead, X₁, X₂, X₃

Independent Variable	Coefficient Estimate	p-value
X ₁	0.22	0.002
X ₂	0.45	0.000
X ₃	0.18	0.013
Lead	-0.414	0.000

Strategies

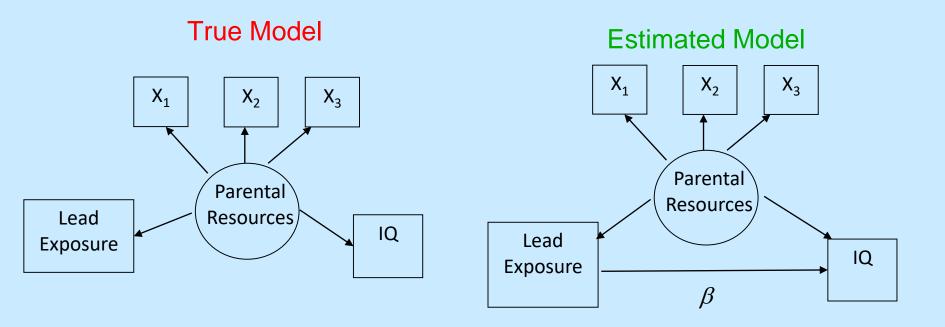
- 1. Parameterize measurement error:
- Sensitivity Analysis
- Bayesian Analysis
- Bounds

- 2. Multiple Indicators:
- Scales
- SEM



 $E(\hat{\beta}_{yx}) = 0 \iff X \| Y \| Z$

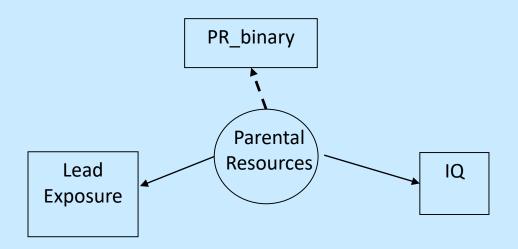
Structural Equation Models Work



In the Structural Equation Model

- $E(\hat{\beta}) = 0$
- $\hat{\beta} = .07$ (p-value = .499)
- Lead and IQ "screened off" by PR

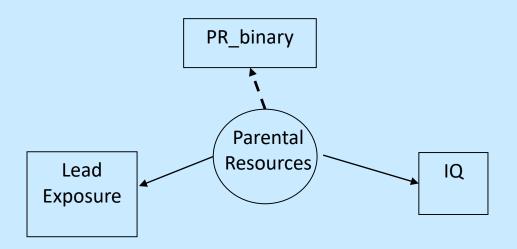
Coarsening is Bad



Parental Resources $< m(PR) \rightarrow PR_binary = 0$ Parental Resources $\ge m(PR) \rightarrow PR_binary = 1$

Independent Variable	Coefficient Estimate	p-value	Screened-off at .05?
PR_binary	3.53	0.000	No
Lead	-0.56	0.000	No

Coarsening is Bad

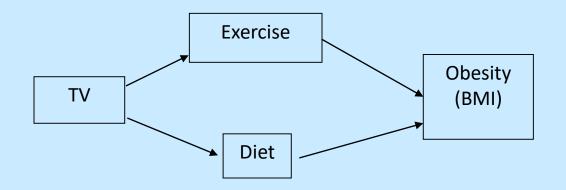


Parental Resources $< m(PR) \rightarrow PR_binary = 0$ Parental Resources $\ge m(PR) \rightarrow PR_binary = 1$

Independent Variable	Coefficient Estimate	p-value	Screened-off at .05?
PR_binary	3.53	0.000	No
Lead	-0.56	0.000	No

$TV \rightarrow Obesity$

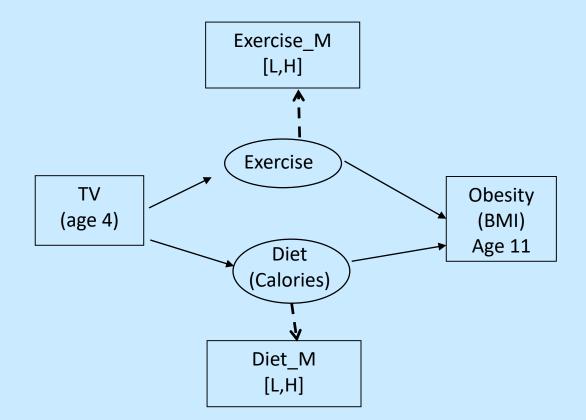
Proctor, et al. (2003). Television viewing and change in body fat from preschool to early adolescence: The Framingham Children's Study *International Journal of Obesity*, 27, 827-833.



Goals:

- Estimate the influence of TV on BMI
- Tease apart the mechanisms (diet, exercise)

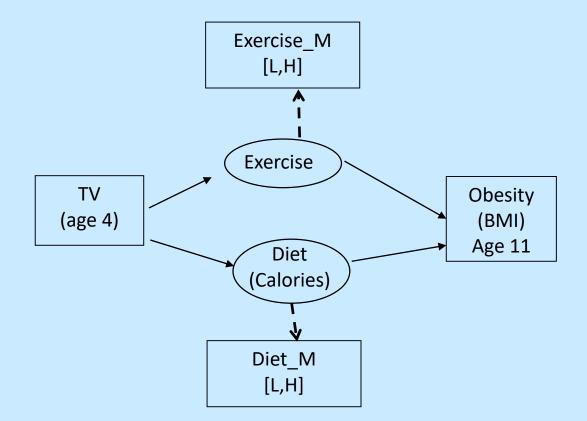
Measures of Exercise, Diet



Exercise_M: $L \leftarrow$ Calories expended in exercise in bottom two tertiles Exercise_M: $H \leftarrow$ Calories expended in exercise in top tertile

- Diet_M: L \leftarrow Calories consumed in bottom two tertiles
- Diet_M: $H \leftarrow$ Calories consumed in top tertile

Measures of Exercise, Diet



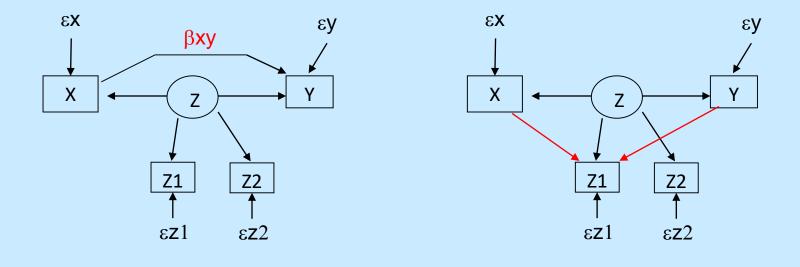
Findings:

- TV and Obesity NOT screened off by Exercise_M & Diet_M
- Bias in mechanism estimation unknown

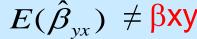
Problems with Latent Variable SEMs

Specified Model

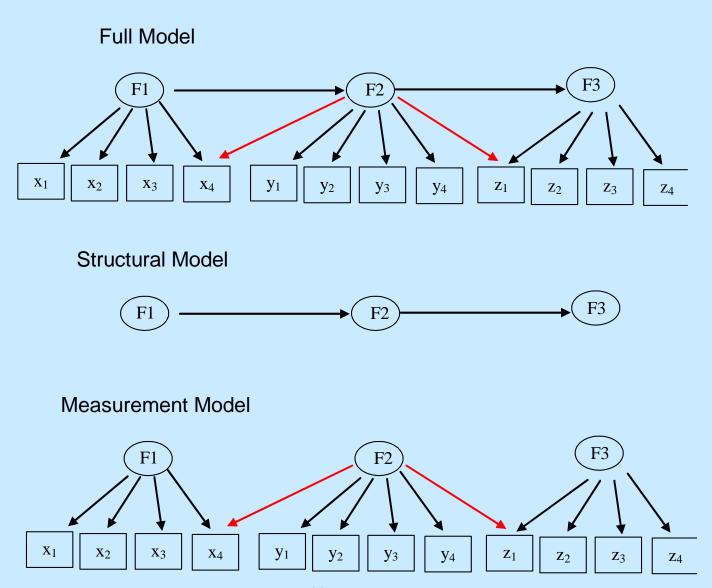
True Model



 $E(\hat{\beta}_{yx}) = 0 \quad \not\bowtie \quad X_{\parallel} \vee |Z \qquad E(\hat{\beta}_{yx}) \neq \beta X$



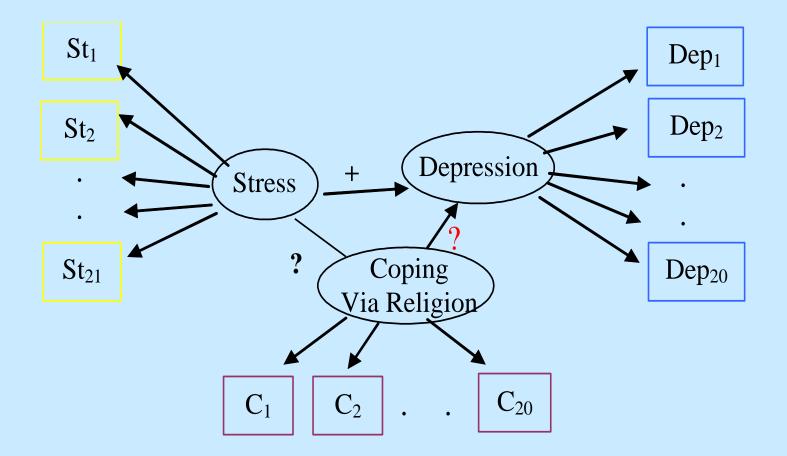
Latent Variable Models



40

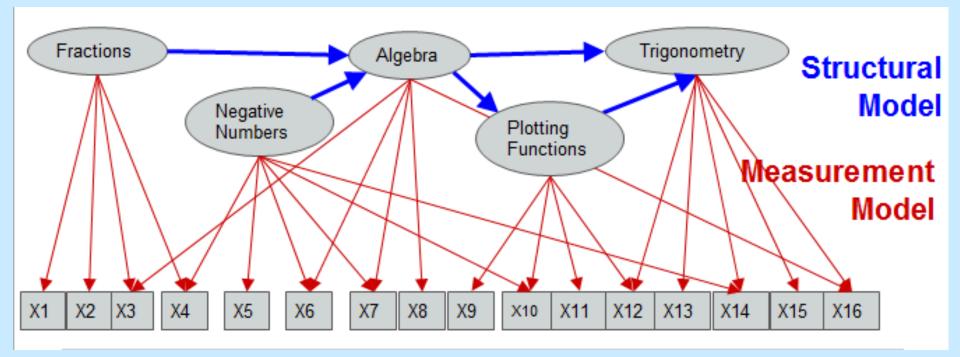
Psychometric Models

Social/Personality Psychology

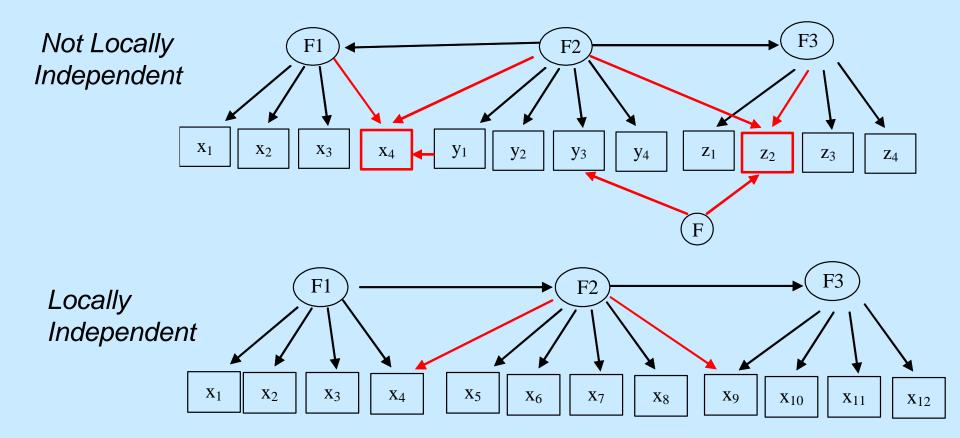


Psychometric Models

Educational Research



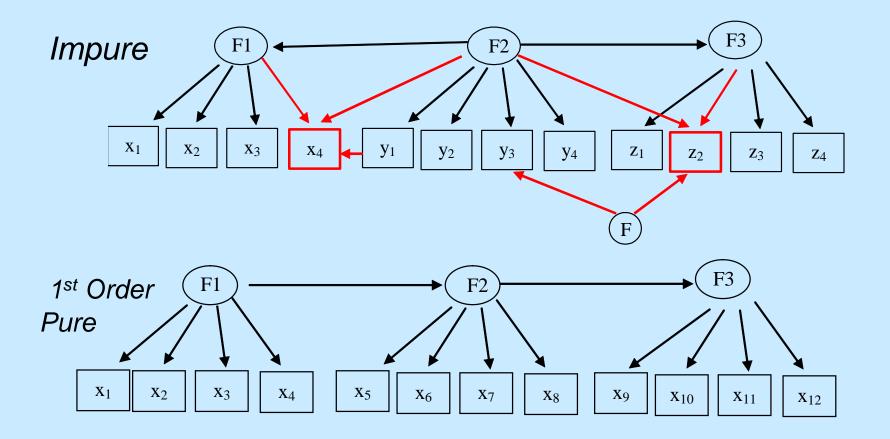
Local Independence / Pure Measurement Models



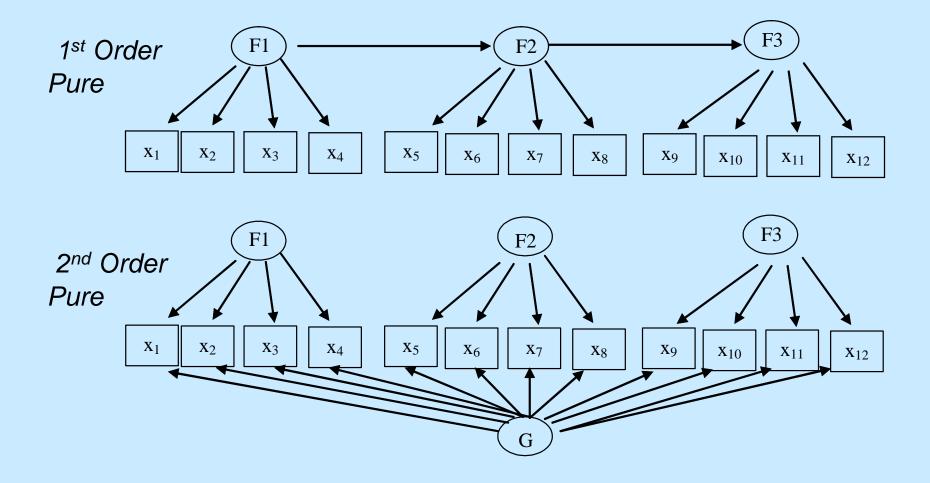
Local Independence:

For every pair of measured items x_{i, x_j} : $x_i \parallel x_i \parallel modeled$ latent parents of x_i

Local Independence / Pure Measurement Models



Local Independence / Pure Measurement Models



Rank 1 Constraints: Tetrad Equations

 $W = \lambda_1 L + \varepsilon_1$

 $X = \lambda_2 L + \varepsilon_2$

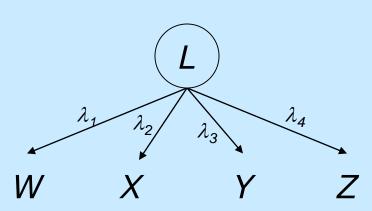
 $Y = \lambda_3 L + \varepsilon_3$

 $Z = \lambda_{\Delta}L + \varepsilon_{\Delta}$

tetrad

constraints

Fact: given

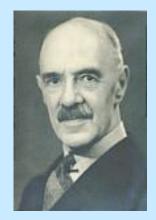


it follows that

 $Cov_{WX}Cov_{YZ} = (\lambda_1\lambda_2\sigma_L^2)(\lambda_3\lambda_4\sigma_L^2) = (\lambda_1\lambda_3\sigma_L^2)(\lambda_2\lambda_4\sigma_L^2) = Cov_{WY}Cov_{XZ}$

 $\sigma_{WX}\sigma_{YZ} = \sigma_{WY}\sigma_{XZ} = \sigma_{WZ}\sigma_{XY}$

Charles Spearman (1904)

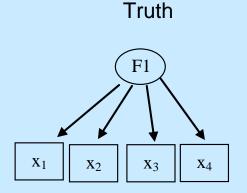


2

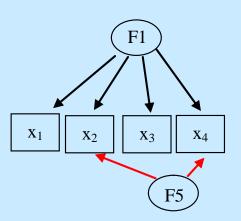
$$\rho_{m1,m2} * \rho_{r1,r2} = \rho_{m1,r1} * \rho_{m2,r2} = \rho_{m1,r2} * \rho_{m2,r1}$$

$$\boxed{m1} \quad \boxed{m2} \quad \boxed{r1} \quad \boxed{r2}$$

Impurities/Deviations from Local Independence defeat tetrad constraints selectively



Truth



 $\rho_{x1,x2} * \rho_{x3,x4} = \rho_{x1,x3} * \rho_{x2,x4}$

 $\rho_{x1,x2} * \rho_{x3,x4} = \rho_{x1,x4} * \rho_{x2,x3}$

 $\rho_{x1,x3} * \rho_{x2,x4} = \rho_{x1,x4} * \rho_{x2,x3}$

$$\rho_{x1,x2} * \rho_{x3,x4} \neq \rho_{x1,x3} * \rho_{x2,x4}$$

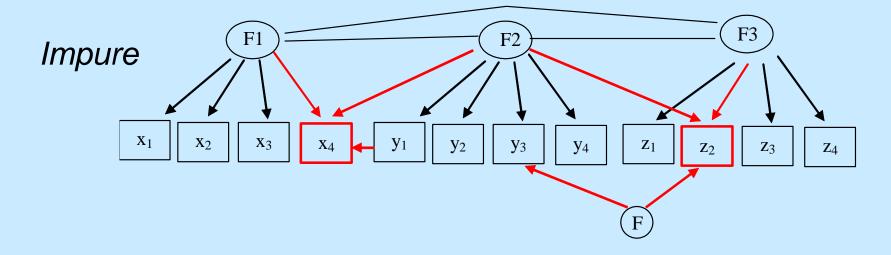
$$\rho_{x1,x2} * \rho_{x3,x4} = \rho_{x1,x4} * \rho_{x2,x3}$$

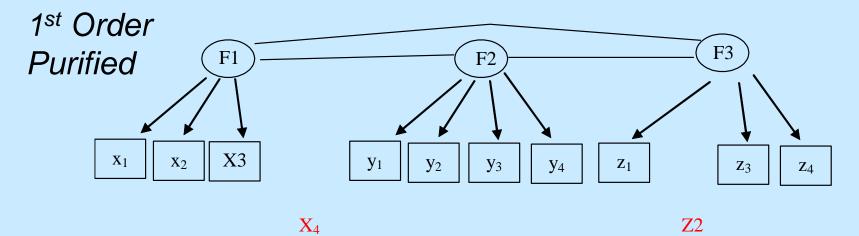
 $\rho_{x1,x3} * \rho_{x2,x4} \neq \rho_{x1,x4} * \rho_{x2,x3}$

Strategies

- 1. Cluster and Purify MM first
 - Use rank constraints to find item subsets that form nth order pure clusters
 - 2. Using Pure MM : Search for Structural Model by testing independence relations among latents *via SEM estimation*
- 2. Specify Impure Measurement Model
 - 1. Specify Measurement Model for all items
 - 2. Using Specified MM: Search for Structural Model by testing independence relations among latents *via SEM estimation*

Purify





50

Search for Measurement Models

BPC, FOFC: Find One Factor Clusters

Input: Covariance Matrix of measured items: Output: Subset of items and clusters that are 1st Order Pure

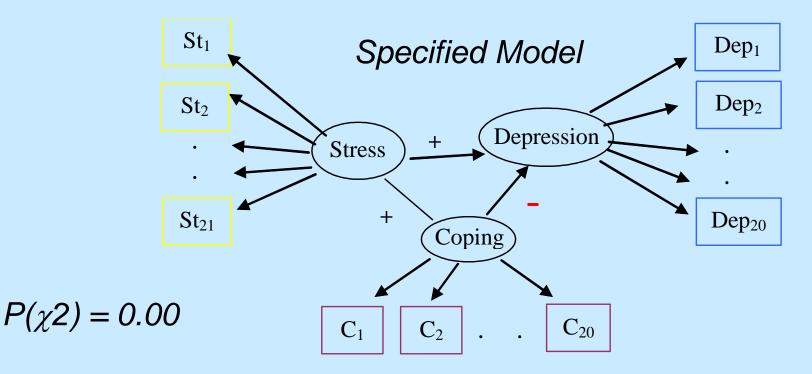
FTFC: Find Two Factor Clusters

Input: Covariance Matrix of measured items: Output: Subset of items and clusters that are 2nd Order Pure

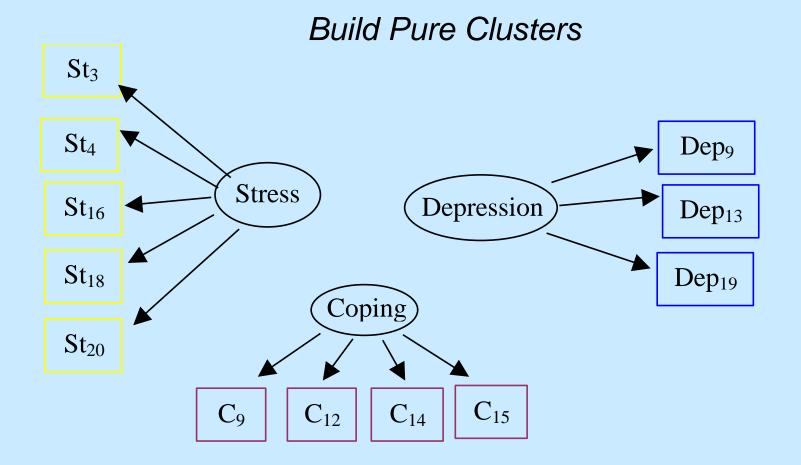
BPC Case Study: Stress, Depression, and Religion

Masters Students (N = 127) 61 - item survey (Likert Scale)

- Stress: St₁ St₂₁
- Depression: D₁ D₂₀
- Religious Coping: C₁ C₂₀



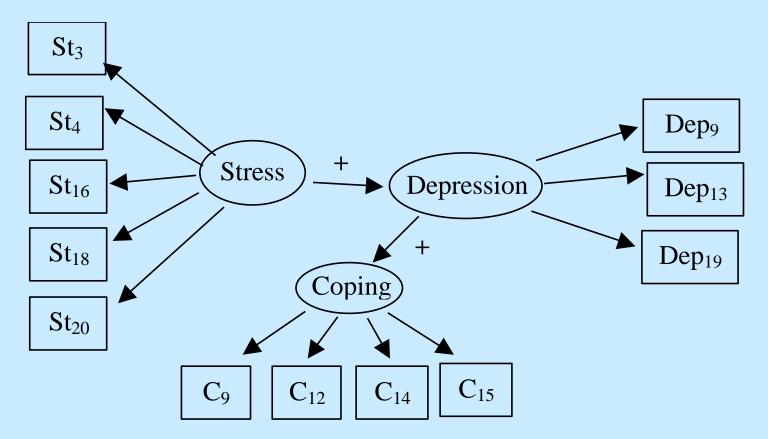
Case Study: Stress, Depression, and Religion



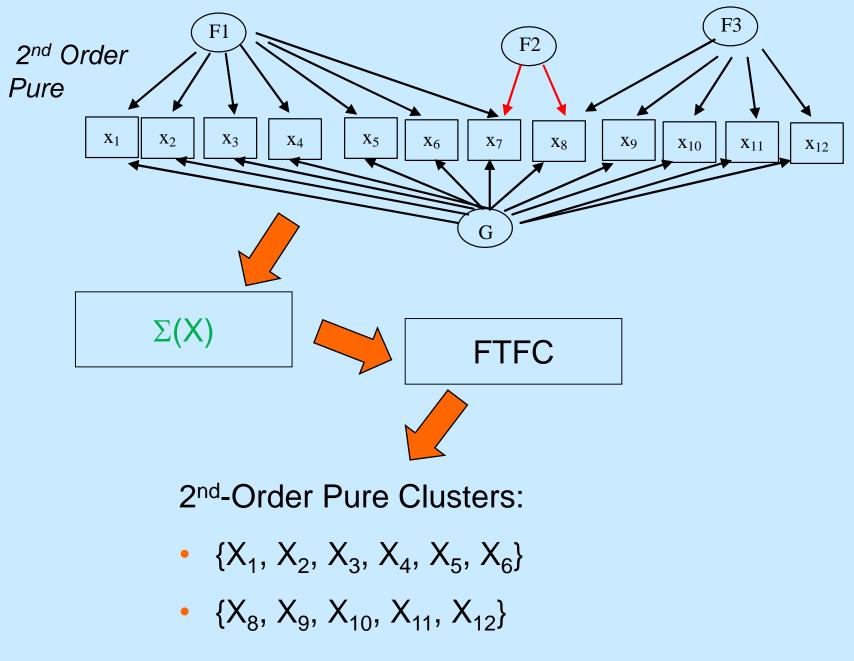
Case Study: Stress, Depression, and Religion

Assume : Stress causally prior to Depression

Find : Stress _||_ Coping | Depression



 $P(\chi 2) = 0.28$



Summary of Search

Causal Search from Passive Observation

- PC, FGS → Patterns (Markov equivalence class no latent confounding)
- FCI \rightarrow PAGs (Markov equivalence including confounders and selection bias)
- CCD \rightarrow Linear cyclic models (no confounding)
- Lingam → unique DAG (no confounding linear non-Gaussian faithfulness not needed)
- BPC, FOFC, FTFC \rightarrow (Equivalence class of linear latent variable models)
- LVLingam \rightarrow set of DAGs (confounders allowed)
- CyclicLingam \rightarrow set of DGs (cyclic models, no confounding)
- Non-linear additive noise models \rightarrow unique DAG
- Most of these algorithms are pointwise consistent uniform consistent algorithms require stronger assumptions

Causal Search from Manipulations/Interventions

What sorts of manipulation/interventions have been studied?

- Do(X=x): replace P(X | parents(X)) with P(X=x) = 1.0
- Randomize(X): (replace P(X | parents(X))) with $P_M(X)$, e.g., uniform)
- Soft interventions (replace P(X | parents(X)) with $P_M(X | parents(X), I), P_M(I)$)
- Simultaneous interventions (reduces the number of experiments required to be guaranteed to find the truth with an independence oracle from N-1 to 2 log(N)
- Sequential interventions
- Sequential, conditional interventions
- Time sensitive interventions