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Part One: Non-parametric identification

The general identification problem for DAGs with unobserved
variables

Simple examples

Tian’s Algorithm

Formulation in terms of ’Fixing’ operation
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Intervention distributions (I)

Given a causal DAG G(V ) with distribution:

p(V ) =
∏
v∈V

p(v | pa(v))

where pa(v) = {x | x → v};

Intervention distribution on X :

p(V \ X | do(X = x)) =
∏

v∈V\X

p(v | pa(v)).

here on the RHS a variable in X occurring in pa(v), for some v ∈ V \ X ,
takes the corresponding value in x.
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Example

X M Y

L

X M Y

L

p(X , L,M,Y ) = p(L) p(X | L) p(M | X )p(Y | L,M)

p(L,M,Y | do(X = x̃)) = p(L) × p(M | x̃)p(Y | L,M)
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Intervention distributions (II)

Given a causal DAG G with distribution:

p(V ) =
∏
v∈V

p(v | pa(v))

we wish to compute an intervention distribution via truncated
factorization:

p(V \ X | do(X = x)) =
∏

v∈V\X

p(v | pa(v)).

Hence if we are interested in Y ⊂ V \ X then we simply marginalize:

p(Y | do(X = x)) =
∑

w∈V\(X∪Y )

∏
v∈V\X

p(v | pa(v)).

( ‘g-computation’ formula of Robins (1986); see also Spirtes et al. 1993.)

Note: p(Y | do(X = x)) is a sum over a product of terms p(v | pa(v)).
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Special case: no effect of M on Y

X M Y

L

X M Y

L

p(X , L,M,Y ) = p(L)p(X | L)p(M | X )p(Y | L,M)

p(L,M,Y | do(X = x̃)) = p(L)p(M | x̃)p(Y | L)

p(Y | do(X = x̃)) =
∑
l,m

p(L= l)p(M =m | x̃)p(Y | L= l)

=
∑
l

p(L= l)p(Y | L= l)

= p(Y ) 6= P(Y | x̃)

since X 6⊥⊥ Y . ‘Correlation is not Causation’.
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Example with M unobserved

X M Y

L

X M Y

L

p(Y | do(X = x̃)) =
∑
l,m

p(L= l)p(M =m | x̃)p(Y | L= l ,M =m)

=
∑
l,m

p(L= l)p(M =m | x̃ , L= l)p(Y | L= l ,M =m,X = x̃)

=
∑
l,m

p(L= l)p(Y ,M =m | L= l ,X = x̃)

=
∑
l

p(L= l)p(Y | L= l ,X = x̃).

Here we have used that M ⊥⊥ L | X and Y ⊥⊥ X | L,M.

⇒ can find p(Y | do(X = x̃)) even if M not observed.

This is an example of the ‘back door formula’, aka ‘standardization’.
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Example with L unobserved

X M Y

L

X M Y

L

p(Y | do(X = x̃))

=
∑
m

p(M =m | do(X = x̃))p(Y | do(M =m))
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∑
m

p(M =m | X = x̃)p(Y | do(M =m))
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m
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x∗

p(X =x∗)p(Y | M =m,X =x∗)
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⇒ can find p(Y | do(X = x̃)) even if L not observed.

This is an example of the ‘front door formula’ of Pearl (1995).
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But with both L and M unobserved....

X M Y

L

...we are out of luck!

Given P(X ,Y ), absent further assumptions we cannot distinguish:

X Y

L

X M Y
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General Identification Question

Given: a latent DAG G(O ∪H), where O are observed, H are hidden, and
disjoint subsets X ,Y ⊆ O.

Q: Is p(Y | do(X )) identified given p(O)?

A: Provide either an identifying formula that is a function of p(O)

or report that p(Y | do(X )) is not identified.

Motivations:

Characterize which interventions can be identified without
parametric assumptions;

Understand which functionals of the observed margin have a causal
interpretation;
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Latent Projection
Can preserve conditional independences and causal coherence with
latents using paths. DAG G on vertices V = O∪̇H, define latent
projection as follows: (Verma and Pearl, 1992)

Whenever there is a path of the form

x h1 · · · hk y

add

x y

Whenever there is a path of the form

x h1 · · · hk y

add

x y

Then remove all latent variables H from the graph.
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ADMGs

u

x

y

z

w t

−→
project

x

y

z

t

Latent projection leads to an acyclic directed mixed graph (ADMG)

Can read off independences with d/m-separation.

The projection preserves the causal structure; Verma and Pearl (1992).
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‘Conditional’ Acyclic Directed Mixed Graphs

An ‘conditional’ acyclic directed mixed graph (CADMG) is a bi-partite
graph G(V ,W ), used to represent structure of a distribution over V ,
indexed by W , for example P(V | do(W )).

We require:

(i) The induced subgraph of G on V is an ADMG;

(ii) The induced subgraph of G on W contains no edges;

(iii) Edges between vertices in W and V take the form w → v .

We represent V with circles, W with squares:

A0 L1 A1 Y

Here V = {L1,Y } and W = {A0,A1}.
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Ancestors and Descendants

L0 A0 L1 A1 Y

In a CADMG G(V ,W ) for v ∈ V , let the set of ancestors , descendants
of v be:

anG(v) = {a | a→ · · · → v or a = v in G, a ∈ V ∪W },

deG(v) = {d | d ← · · · ← v or d = v in G, d ∈ V ∪W },

In the example above:

an(y) = {a0, l1, a1, y}.
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Districts
Define a district in a C/ADMG to be maximal sets connected by
bi-directed edges:

1

2

3

4

5

1 3 5

u v

2 4

∑
u,v

p(u) p(x1 | u) p(x2 | u) p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

=
∑
u

p(u) p(x1 | u) p(x2 | u)
∑
v

p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

= q(x1, x2) · q(x3, x4 | x1, x2) · q(x5 | x3) .

=
∏
i

qDi (xDi | xpa(Di )\Di
)

Districts are called ‘c-components’ by Tian.

18 / 79



Districts
Define a district in a C/ADMG to be maximal sets connected by
bi-directed edges:

1

2

3

4

5

1 3 5

u v

2 4

∑
u,v

p(u) p(x1 | u) p(x2 | u) p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

=
∑
u

p(u) p(x1 | u) p(x2 | u)
∑
v

p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

= q(x1, x2) · q(x3, x4 | x1, x2) · q(x5 | x3) .

=
∏
i

qDi (xDi | xpa(Di )\Di
)

Districts are called ‘c-components’ by Tian.

18 / 79



Districts
Define a district in a C/ADMG to be maximal sets connected by
bi-directed edges:

1

2

3

4

5 1 3 5

u v

2 4

∑
u,v

p(u) p(x1 | u) p(x2 | u) p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

=
∑
u

p(u) p(x1 | u) p(x2 | u)
∑
v

p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

= q(x1, x2) · q(x3, x4 | x1, x2) · q(x5 | x3) .

=
∏
i

qDi (xDi | xpa(Di )\Di
)

Districts are called ‘c-components’ by Tian.

18 / 79



Districts
Define a district in a C/ADMG to be maximal sets connected by
bi-directed edges:

1

2

3

4

5 1 3 5

u v

2 4

∑
u,v

p(u) p(x1 | u) p(x2 | u) p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

=
∑
u

p(u) p(x1 | u) p(x2 | u)
∑
v

p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

= q(x1, x2) · q(x3, x4 | x1, x2) · q(x5 | x3) .

=
∏
i

qDi (xDi | xpa(Di )\Di
)

Districts are called ‘c-components’ by Tian.

18 / 79



Districts
Define a district in a C/ADMG to be maximal sets connected by
bi-directed edges:

1

2

3

4

5 1 3 5

u v

2 4

∑
u,v

p(u) p(x1 | u) p(x2 | u) p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

=
∑
u

p(u) p(x1 | u) p(x2 | u)
∑
v

p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

= q(x1, x2) · q(x3, x4 | x1, x2) · q(x5 | x3) .

=
∏
i

qDi (xDi | xpa(Di )\Di
)

Districts are called ‘c-components’ by Tian.

18 / 79



Districts
Define a district in a C/ADMG to be maximal sets connected by
bi-directed edges:

1

2

3

4

5 1 3 5

u v

2 4

∑
u,v

p(u) p(x1 | u) p(x2 | u) p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

=
∑
u

p(u) p(x1 | u) p(x2 | u)
∑
v

p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

= q(x1, x2) · q(x3, x4 | x1, x2) · q(x5 | x3) .

=
∏
i

qDi (xDi | xpa(Di )\Di
)

Districts are called ‘c-components’ by Tian.

18 / 79



Districts
Define a district in a C/ADMG to be maximal sets connected by
bi-directed edges:

1

2

3

4

5 1 3 5

u v

2 4

∑
u,v

p(u) p(x1 | u) p(x2 | u) p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

=
∑
u

p(u) p(x1 | u) p(x2 | u)
∑
v

p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

= q(x1, x2) · q(x3, x4 | x1, x2) · q(x5 | x3) .

=
∏
i

qDi (xDi | xpa(Di )\Di
)

Districts are called ‘c-components’ by Tian.

18 / 79



Districts
Define a district in a C/ADMG to be maximal sets connected by
bi-directed edges:

1

2

3

4

5 1 3 5

u v

2 4

∑
u,v

p(u) p(x1 | u) p(x2 | u) p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

=
∑
u

p(u) p(x1 | u) p(x2 | u)
∑
v

p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

= q(x1, x2) · q(x3, x4 | x1, x2) · q(x5 | x3) .

=
∏
i

qDi (xDi | xpa(Di )\Di
)

Districts are called ‘c-components’ by Tian.
18 / 79



Edges between districts

1 2

3 4

There is no ordering on vertices such that parents of a district precede
every vertex in the district.

(Cannot form a ‘chain graph’ ordering.)

19 / 79



Notation for Districts

L0 A0 L1 A1 Y

In a CADMG G(V ,W ) for v ∈ V , the district of v is:

disG(v) = {d | d ↔ · · · ↔ v or d = v in G, d ∈ V }.

Only variables in V are in districts.

In example above:

dis(y) = {l0, l1, y}, dis(a1) = {a1}.

We use D(G) to denote the set of districts in G.

In example D(G) = { {l0, l1, y}, {a1} }.
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Tian’s ID algorithm for identifying P(Y | do(X ))

Jin Tian

(A) Re-express the query as a sum over a product of intervention
distributions on districts:

p(Y | do(X )) =
∑∏

i

p(Di | do(pa(Di ) \ Di )).

(B) Check whether each term: p(Di | do(pa(Di ) \ Di )) is identified.

This is clearly sufficient for identifiability.

Necessity follows from results of Shpitser (2006); see also Huang and
Valtorta (2006).
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(A) Decomposing the query

1 Remove edges into X :
Let G[V \ X ] denote the graph formed by removing edges with an
arrowhead into X .

2 Restrict to variables that are (still) ancestors of Y :
Let T = anG[V\X ](Y )
be vertices that lie on directed paths between X and Y (after
cutting edges into X ).
Let G∗ be formed from G[V \ X ] by removing vertices not in T .

3 Find the districts:
Let D1, . . . ,Ds be the districts in G∗.

Then:

P(Y | do(X )) =
∑

T\(X∪Y )

∏
Di

p(Di | do(pa(Di ) \ Di )).
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Example: front door graph

X M Y

p(Y | do(X ))

G

X M Y

G[V\{X}] = G∗

T = {X ,M,Y }

Districts in T \ {X} are D1 = {M}, D2 = {Y }.

p(Y | do(X )) =
∑
M

p(M | do(X ))p(Y | do(M))
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Example: Sequentially randomized trial
A1 is randomized; A2 is randomized conditional on L,A1;

A0 L1 A1 YG

p(Y | do(A0,A1))

A0 L1 A1 Y

T = {A0,A1,Y }

G[V\{A0,A1}]

A0 A1 Y

D1 = {Y }

G∗

(Here the decomposition is trivial since there is only one district and no
summation.)
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(B) Finding if P(D |do(pa(D) \ D)) is identified
Idea: Find an ordering r1, . . . , rp of O \ D such that:

If P(O \ {r1, . . . , rt−1} | do(r1, . . . , rt−1)) is identified

Then P(O \ {r1, . . . , rt} | do(r1, . . . , rt)) is also identified.

Sufficient for identifiability of P(D | do(pa(D) \ D)), since:

P(O) is identified

D = O \ {r1, . . . , rp}, so
P(O \ {r1, . . . , rp} | do(r1, . . . , rp)) = P(D | do(pa(D) \ D)).

Such a vertex rt will said to be ‘fixable’, given that we have already
‘fixed’ r1, . . . , rt−1:

‘fixing’ differs formally from ‘do’/cutting edges since the latter does not
preserve identifiability in general.

To do:

Give a graphical characterization of ‘fixability’;

Construct the identifying formula.
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The set of fixable vertices

Given a CADMG G(V ,W ) we define the set of fixable vertices,

F (G) ≡ {v | v ∈ V , disG(v) ∩ deG(v) = {v}} .

In words, a vertex v ∈ V is fixable in G if there is no (proper) descendant
of v that is in the same district as v in G.

Thus v is fixable if there is no vertex y 6= v such that

v ↔ · · · ↔ y and v → · · · → y in G.

Note that the set of fixable vertices is a subset of V , and contains at
least one vertex from each district in G.

26 / 79



The set of fixable vertices

Given a CADMG G(V ,W ) we define the set of fixable vertices,

F (G) ≡ {v | v ∈ V , disG(v) ∩ deG(v) = {v}} .

In words, a vertex v ∈ V is fixable in G if there is no (proper) descendant
of v that is in the same district as v in G.

Thus v is fixable if there is no vertex y 6= v such that

v ↔ · · · ↔ y and v → · · · → y in G.

Note that the set of fixable vertices is a subset of V , and contains at
least one vertex from each district in G.

26 / 79



Example: Front door graph

X M Y

G

F (G) = {M,Y }

X is not fixable since Y is a descendant of X and

Y is in the same district as X
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Example: Sequentially randomized trial

A0 L1 A1 Y

Here F (G) = {A0,A1,Y }.

L1 is not fixable since Y is a descendant of L1 and

Y is in the same district as L1.
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The graphical operation of fixing vertices

Given a CADMG G(V ,W ,E ), for every r ∈ F (G) we associate a
transformation φr on the pair (G,P(XV | XW )):

φr (G) ≡ G†(V \ {r},W ∪ {r}),

where in G† we remove from G any edge that has an arrowhead at r .

The operation of ‘fixing r ’ simply transfers r from ‘V ’ to ‘W ’, and
removes edges r ↔ or r ←.
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Example: front door graph

X M YG

F (G) = {M,Y }

X M YφM(G)

F (φM(G)) = {X ,Y }

Note that X was not fixable in G,

but it is fixable in φM(G) after fixing M.
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Example: Sequentially randomized trial

A0 L1G A1 Y

Here F (G) = {A0,A1,Y }.

A0 L1φA1 (G) A1 Y

Notice F (φA1 (G)) = {A0, L1,Y }.

Thus L1 was not fixable prior to fixing A1,

but L1 is fixable in φA1 (G) after fixing A1.
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The probabilistic operation of fixing vertices

Given a distribution P(V |W ) we associate a transformation:

φr (P(V |W );G) ≡ P(V |W )

P(r | mbG(r))
.

Here
mbG(r) = {y 6= r | (r←y) or (r↔◦ · · · ◦ ↔y) or (r↔◦ · · · ◦ ↔ ◦←y)}.

In words: we divide by the conditional distribution of r given the other vertices

in the district containing r , and the parents of the vertices in that district.

It can be shown that if r is fixable in G then:

φr (P(V | do(W ));G) = P(V \ {r} | do(W ∪ {r})).

as required.

Note: If r is fixable in G then mbG(r) is the ‘Markov blanket’ of r in anG(disG(r)).
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Unifying Marginalizing and Conditioning

Some special cases:

If mbG(r) = (V ∪W ) \ {r} then fixing corresponds to marginalizing:

φr (P(V |W );G) =
P(V |W )

P(r | (V ∪W ) \ {r})
= P(V \ {r} |W )

If mbG(r) = W then fixing corresponds to ordinary conditioning:

φr (P(V |W );G) =
P(V |W )

P(r |W )
= P(V \ {r} |W ∪ {r})

In the general case fixing corresponds to re-weighting, so

φr (P(V |W );G) = P∗(V \ {r} |W ∪ {r}) 6= P(V \ {r} |W ∪ {r})

Having a single operation simplifies the identification algorithm.

33 / 79



Unifying Marginalizing and Conditioning

Some special cases:

If mbG(r) = (V ∪W ) \ {r} then fixing corresponds to marginalizing:

φr (P(V |W );G) =
P(V |W )

P(r | (V ∪W ) \ {r})
= P(V \ {r} |W )

If mbG(r) = W then fixing corresponds to ordinary conditioning:

φr (P(V |W );G) =
P(V |W )

P(r |W )
= P(V \ {r} |W ∪ {r})

In the general case fixing corresponds to re-weighting, so

φr (P(V |W );G) = P∗(V \ {r} |W ∪ {r}) 6= P(V \ {r} |W ∪ {r})

Having a single operation simplifies the identification algorithm.

33 / 79



Composition of fixing operations

We use ◦ to indicate composition of operations in the natural way.

If s is fixable in G and then r is fixable in φs(G) (after fixing s) then:

φr ◦ φs(G) ≡ φr (φs(G))

φr ◦ φs(P(V |W );G) ≡ φr (φs (P(V |W );G) ;φs(G))
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Back to step (B) of identification

Recall our goal is to identify P(D | do(pa(D) \ D)), for the districts D in
G∗:

X M Y

p(Y | do(X ))

G

X M Y

G[V\{X}] = G∗

T = {X ,M,Y }

Districts in T \ {X} are D1 = {M}, D2 = {Y }.

p(Y | do(X )) =
∑
M

p(M | do(X ))p(Y | do(M))
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Example: front door graph: D1 = {M}

X M YG

F (G) = {M,Y }

X M YφY (G)

F (φY (G)) = {X ,M}

X M YφX ◦ φY (G)

This proves that p(M | do(X )) is identified.
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Example: front door graph: D2 = {Y }

X M YG

F (G) = {M,Y }

X M YφM(G)

F (φM(G)) = {X ,Y }

X M YφX ◦ φM(G)

This proves that p(Y | do(M)) is identified.
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Example: Sequential Randomization

A0 L1G A1 Y

A0 L1φA1 (G) A1 Y

A0 L1φL1 ◦ φA1 (G) A1 Y

A0 L1φA0 ◦ φL1 ◦ φA1 (G) A1 Y

This establishes that P(Y | do(A0,A1)) is identified.
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Review: Tian’s ID algorithm via fixing

(A) Re-express the query as a sum over a product of intervention
distributions on districts:

p(Y | do(X )) =
∑∏

i

p(Di | do(pa(Di ) \ Di )).

I Cut edges into X ;
I Restrict to vertices that are (still) ancestors of Y ;
I Find the set of districts D1, . . . ,Dp.

(B) Check whether each term: p(Di | do(pa(Di ) \ Di )) is identified:
I Iteratively find a vertex that rt that is fixable in φrt−1 ◦ · · · ◦ φr1 (G),

with rt /∈ Di ;
I If no such vertex exists then P(Di | do(pa(Di ) \Di )) is not identified.
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Not identified example

L X YG X YG∗

Suppose we wish to find p(Y | do(X )).

There is one district D = {Y } in G∗.

But since the only fixable vertex in G is Y , we see that p(Y | do(X )) is
not identified.
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Reachable subgraphs of an ADMG

A CADMG G(V ,W ) is reachable from ADMG G∗(V ∪W ) if there is an
ordering of the vertices in W = 〈w1, . . . ,wk〉, such that for j = 1, . . . , k,

w1 ∈ F (G∗) and for j = 2, . . . , k ,

wj ∈ F (φwj−1 ◦ · · · ◦ φw1 (G∗)).

Thus a subgraph is reachable if, under some ordering, each of the vertices
in W may be fixed, first in G∗, and then in φw1 (G∗), then in
φw2 (φw1 (G∗)), and so on.
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Invariance to orderings

In general, there may exist multiple sequences that fix a set W , however,
they all result in both the same graph and distribution.

This is a consequence of the following:

Lemma

Let G(V ,W ) be a CADMG with r , s ∈ F(G), and let qV (V |W ) be
Markov w.r.t. G, and further (a) φr (qV ;G) is Markov w.r.t. φr (G); and
(b) φs(qV ;G) is Markov w.r.t. φs(G). Then

φr ◦ φs(G) = φs ◦ φr (G);

φr ◦ φs(qV ;G) = φs ◦ φr (qV ;G).

Consequently, if G(V ,W ) is reachable from G(V ∪W ) then
φV (p(V ,W );G) is uniquely defined.
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Intrinsic sets
A set D is said to be intrinsic if it forms a district in a reachable
subgraph. If D is intrinsic in G then p(D | do(pa(D) \ D)) is identified.

Let I(G) denote the intrinsic sets in G.

Theorem

Let G(H ∪ V ) be a causal DAG with latent projection G(V ). For
A∪̇Y ⊂ V , let Y ∗ = anG(V )V\A(Y ). Then if D(G(V )Y ∗) ⊆ I(G(V )),

p(Y | doG(H∪V )(A)) =
∑
Y ∗\Y

∏
D∈D(G(V )Y∗ )

φV\D(p(V );G(V )). (∗)

If not, there exists D ∈ D(G(V )Y ∗) \ I(G(V )) and p(Y | doG(H∪V )(A))
is not identifiable in G(H ∪ V ).

Thus p(D | do(pa(D) \ D)) for intrinsic D play the same role as
P(v | do(pa(v))) = p(v | pa(v)) in the simple fully observed case.

Shpitser+R+Robins (2012) give an efficient algorithm for computing (∗).

43 / 79



Intrinsic sets
A set D is said to be intrinsic if it forms a district in a reachable
subgraph. If D is intrinsic in G then p(D | do(pa(D) \ D)) is identified.

Let I(G) denote the intrinsic sets in G.

Theorem

Let G(H ∪ V ) be a causal DAG with latent projection G(V ). For
A∪̇Y ⊂ V , let Y ∗ = anG(V )V\A(Y ). Then if D(G(V )Y ∗) ⊆ I(G(V )),

p(Y | doG(H∪V )(A)) =
∑
Y ∗\Y

∏
D∈D(G(V )Y∗ )

φV\D(p(V );G(V )). (∗)

If not, there exists D ∈ D(G(V )Y ∗) \ I(G(V )) and p(Y | doG(H∪V )(A))
is not identifiable in G(H ∪ V ).

Thus p(D | do(pa(D) \ D)) for intrinsic D play the same role as
P(v | do(pa(v))) = p(v | pa(v)) in the simple fully observed case.

Shpitser+R+Robins (2012) give an efficient algorithm for computing (∗).

43 / 79



Intrinsic sets
A set D is said to be intrinsic if it forms a district in a reachable
subgraph. If D is intrinsic in G then p(D | do(pa(D) \ D)) is identified.

Let I(G) denote the intrinsic sets in G.

Theorem

Let G(H ∪ V ) be a causal DAG with latent projection G(V ). For
A∪̇Y ⊂ V , let Y ∗ = anG(V )V\A(Y ). Then if D(G(V )Y ∗) ⊆ I(G(V )),

p(Y | doG(H∪V )(A)) =
∑
Y ∗\Y

∏
D∈D(G(V )Y∗ )

φV\D(p(V );G(V )). (∗)

If not, there exists D ∈ D(G(V )Y ∗) \ I(G(V )) and p(Y | doG(H∪V )(A))
is not identifiable in G(H ∪ V ).

Thus p(D | do(pa(D) \ D)) for intrinsic D play the same role as
P(v | do(pa(v))) = p(v | pa(v)) in the simple fully observed case.

Shpitser+R+Robins (2012) give an efficient algorithm for computing (∗).

43 / 79



Part Two: The Nested Markov Model

1 Motivation

2 Deriving constraints via fixing

3 The Nested Markov Model

4 Finer Factorizations

5 Discrete Parameterization

6 Testing and Fitting

7 Completeness

44 / 79



Outline

1 Motivation

2 Deriving constraints via fixing

3 The Nested Markov Model

4 Finer Factorizations

5 Discrete Parameterization

6 Testing and Fitting

7 Completeness

45 / 79



Motivation

So far we have shown how to estimate interventional distributions
separately, but no guarantee these estimates are coherent.

We also may have multiple identifying expressions: which one should
we use?

X M Y

L p(Y | do(X ))
front door?
back door?
does it matter?

We can test constraints separately, but ultimately don’t have a way
to check if the model is a good one.

Being able to evaluate a likelihood would allow lots of standard
inference techniques (e.g. LR, Bayesian).

Even better, if model can be shown smooth we get nice asymptotics
for free.

All this suggests we should define a model which we can parameterize.
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Deriving constraints via fixing

Let p(O) be the observed margin from a DAG with latents G(O ∪ H),

Idea: If r ∈ O is fixable then φr (p(O);G) will obey the Markov property
for the graph φr (G).

. . . and this can be iterated.

This gives non-parametric constraints that are not independences, that
are implied by the latent DAG.
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Example: The ‘Verma’ Constraint

A0 L1G A1 Y

This graph implies no conditional independences on P(A0, L1,A1,Y ).

But since F (G) = {A0,A1,Y }, we may construct:

A0 L1φA1 (G) A1 Y

φA1 (p(A0, L1,A1,Y )) = p(A0, L1,A1,Y )/p(A1 | A0, L1)

A0 ⊥⊥ Y | A1 [φA1 (p(A0, L1,A1,Y );G)]
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The nested Markov model

These independences may be used to define a graphical model:

Definition

p(V ) obeys the global nested Markov property for G if for all reachable
sets R, the kernel φV\R(p(V );G) obeys the global Markov property for
φV\R(G).

This is a ‘generalized’ Markov property since it is defined by conditional
independence in re-weighted distributions (obtained via fixing).

We will use N (G) to indicate the set of distributions obeying this
property.
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Notation 1 2 3 4

Note that we can potentially reach the same district by different
methods: e.g. marginalize 4, fix 1, 2 or reverse.

Theorem (R,Evans, Shpitser, Robins, 2017)

For a positive distribution p ∈ N (G) and vertices v1, v2 fixable in G,

(φv1 ◦ φv2 )(p) = (φv2 ◦ φv1 )(p).

Hence, the order of fixing doesn’t matter.

This is another way of saying that all identifying expressions for a causal
quantity will be the same.

For any reachable R this justifies the (unambiguous) notation φV\R .

For p ∈ N (G), let

G[R] ≡ φV\R(G) qR ≡ φV\R(p).

be respectively, the graph and distribution where V \ R is fixed.
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Reachable CADMGs
Note that G[R] is always just the CADMG with:

random vertices R,

fixed vertices paG(R) \ R,

induced edges from G among R and of the form paG(R)→ R.

1

2

3

4

5

Graph shown is G[{3, 4, 5}].

Also recall that if there is an underlying causal DAG then p(xV ) then:

qR(xR | xpa(R)\R) = p(xR | do(xV\R)).
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Example

Y W1 W2

X Z1

Z1

Z2

Z2

p(x , y ,w1,w2, z1, z2)

qyz1 (y , z1 | x ,w1) =
qyw1z1z2 (y ,w1, z1 | x ,w2)

qyw1z1z2 (w1 | x ,w2)

and qyz1 (y | x ,w1) doesn’t depend upon x .
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Nested Markov Model
Various equivalent formulations:

Factorization into Districts.
For each reachable R in G,

qR(xR | xpa(R)\R) =
∏

D∈D(G[R])

fD(xD∪pa(D))

some functions fD .

Weak Global Markov Property.
For each reachable R in G,

A m-separated from B by C in G[R] =⇒ XA ⊥⊥ XB |XC [qR ].

Ordered Local Markov Property.
For every intrinsic S and v maximal in S under some topological ordering,

Xv ⊥⊥ XV\mbG[S](v) |XmbG[S](v) [qS ].

Theorem. These are all equivalent.
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Heads and Tails

As established, we can factorize a graph into districts; however, finer
factorizations are possible.

1 2

3 4

In the graph above, there is a single district, but X1 ⊥⊥ X2.
So could factorize this as

p(x1, x2, x3, x4) = p(x1, x2)p(x3, x4 | x1, x2)

= p(x1)p(x2)p(x3, x4 | x1, x2).

Note that the vertices {3, 4} can’t be d-separated from one another.
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Heads and Tails

Definition

The recursive head associated with intrinsic set S is H ≡ S \ paG(S).
The tail is paG(S).

Recall that the Markov blanket for a fixable vertex is the whole intrinsic
set and its parents S ∪ paG(S) = H ∪ T . So the head cannot be further
divided:

p(xS | xpa(S)\S) = p(xH | xT ) · p(xS\H | xpa(S)\S).

1 2

3 4

But vertices in S \H may factorize:

p(x1, x2, x3, x4)

= p(x3, x4 | x1, x2)p(x1, x2)

= p(x3, x4 | x1, x2)p(x1)p(x2).
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p(xS | xpa(S)\S) = p(xH | xT ) · p(xS\H | xpa(S)\S).

1 2

3 4

But vertices in S \H may factorize:

p(x1, x2, x3, x4)

= p(x3, x4 | x1, x2)p(x1, x2)

= p(x3, x4 | x1, x2)p(x1)p(x2).
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Factorizations
Recursively define a partition of reachable sets as follows. If R has
multiple districts,

[R]G ≡ [D1]G ∪ · · · ∪ [Dk ]G ;

else R is intrinsic with head H, so

[R]G ≡ {H} ∪ [R \ H]G .

Theorem (Head Factorization Property)

p obeys the nested Markov property for G if and only if for every
reachable set R,

qR(xR | xpa(R)\R) =
∏

H∈[R]G

qH(xH | xT ).

Here qH ≡ qS(H) is density associated with intrinsic set for H.
(Recursive heads are in one-to-one correspondence with intrinsic sets.)
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Heads and Tails

Recall, intrinsic sets are reachable districts:

1 2

3 4

5 6

intrinsic set I {3, 4, 5, 6}
recursive head H {5, 6}
tail T {1, 2, 3, 4}

intrinsic set I {3, 4}
recursive head H {3, 4}
tail T {1, 2}

So

[{3, 4, 5, 6}]G = {{3, 4}, {5, 6}}.

Factorization:

q3456(x3456 | x12) = q56(x56 | x1234) · q34(x34 | x12)
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Heads and Tails

What if we fix 6 first?

1 2

3 4

5 6

intrinsic set I {3, 4, 5}
recursive head H {4, 5}
tail T {1, 2, 3}

intrinsic set I {3}
recursive head H {3}
tail T {1}

So

[{3, 4, 5}]G = {{3}, {4, 5}}.

Factorization:

q345(x345 | x12) = q45(x45 | x123) · q3(x3 | x1)
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Heads and Tails

1

2

3

4

5

intrinsic set I {1, 2, 3, 4, 5}
recursive head H {4, 5}
tail T {1, 2, 3}

intrinsic set I {1, 2}
recursive head H {1, 2}
tail T ∅

intrinsic set I {3}
recursive head H {3}
tail T {1}

Factorization:

q12345(x12345) = q45(x45 | x123) · q3(x3 | x1) · q12(x12).
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1 Motivation

2 Deriving constraints via fixing

3 The Nested Markov Model

4 Finer Factorizations

5 Discrete Parameterization
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7 Completeness
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Parameterizations

Let M be a model (i.e. collection of probability distributions).

A parameterization is a continuous bijective map

θ :M→ Θ

with continuous inverse, where Θ is an open subset of Rd .

If θ, θ−1 are twice differentiable then this is a smooth parameterization.

We will assume all variables are binary; this extends easily to the general
categorical / discrete case.
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Parameterization
Say binary distribution p parameterized according to G if1

p(xV | xW ) =
∑

O⊆C⊆V

(−1)|C\O|
∏

H∈[C ]G

θH(xT ),

for some parameters θH(xT ) where O = {v : xv = 0}.

Note: there is no need to assume that θH(xT ) ∈ [0, 1], this comes for free
if p(xV | xW ) ≥ 0.

If suitable causal interpretation of model exists,

θH(xT ) = qS(0H | xT ) = p(0H | xS\H , do(xT\S))

6= p(0H | xT ).

Theorem (Evans and Richardson, 2015)

p is parameterized according to G if and only if it recursively factorizes
according to G (so p ∈ N (G)).

1The definition of [·]G has to be extended to arbirary sets; see appendix.
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Probabilities

1 2 4

3

Example: how do we calculate p(11, 02, 13, 14)?

First,

p(11, 02, 13, 14) = q1(11) · q234(02, 13, 14 | 11).

Then q1(11) = 1− q1(01) = 1− θ1.

For the district {2, 3, 4} get

q234(02, 13, 14 | x1)

= q234(02 | x1)− q234(023 | x1)− q234(024 | x1) + q234(0234 | x1)

= θ2(x1)− θ23(x1)− θ2(x1)θ4(02) + θ2(x1)θ34(x1, 02).

Putting this all together:

p(11, 02, 13, 14)

= {1− θ1} {θ2(1)− θ23(1)− θ2(1)θ4(0) + θ2(1)θ34(1, 0)} .
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Example 1

Z X Y

Intrinsic Sets Z X ,Y X

Heads Z Y X
Tails ∅ Z ,X Z

So parameterization is just

p(z = 0), p(x = 0 | z) p(y = 0 | x , z).

Model is saturated.
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Example 2

10 2 3 4

p(00, 11, 12, 03, 04) = p(00, 11, 12, 03) · q4(04 | 00, 11, 12, 03)

p(00, 11, 12, 03) = q2(12 | 11) · q013(00, 11, 03 | 12)

q013(00, 11, 03 | 12) = q03(00, 03 | 12)− q013(00, 01, 03 | 12)

= θ03(1)− θ013(1)

so

p(00, 11, 12, 03, 04) = {1− θ2(1)} {θ03(1)− θ013(1)} · θ4(0, 1, 1, 0).
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Motivation

So far we have shown how to estimate interventional distributions
separately, but no guarantee these estimates are coherent.

We also may have multiple identifying expressions: which one should
we use?

X M Y

L p(Y | do(X ))
front door?
back door?
does it matter?

We can test constraints separately, but ultimately don’t have a way
to check if the model is a good one.

Being able to evaluate a likelihood would allow lots of standard
inference techniques (e.g. LR, Bayesian).

Even better, if model can be shown smooth we get nice asymptotics
for free.

All this suggests we should define a model which we can parameterize.

69 / 79



Motivation

So far we have shown how to estimate interventional distributions
separately, but no guarantee these estimates are coherent.

We also may have multiple identifying expressions: which one should
we use?

X M Y

L p(Y | do(X ))
front door?
back door?
does it matter?

We can test constraints separately, but ultimately don’t have a way
to check if the model is a good one.

Being able to evaluate a likelihood would allow lots of standard
inference techniques (e.g. LR, Bayesian).

Even better, if model can be shown smooth we get nice asymptotics
for free.

All this suggests we should define a model which we can parameterize.

69 / 79



Motivation

So far we have shown how to estimate interventional distributions
separately, but no guarantee these estimates are coherent.

We also may have multiple identifying expressions: which one should
we use?

X M Y

L p(Y | do(X ))
front door?
back door?
does it matter?

We can test constraints separately, but ultimately don’t have a way
to check if the model is a good one.

Being able to evaluate a likelihood would allow lots of standard
inference techniques (e.g. LR, Bayesian).

Even better, if model can be shown smooth we get nice asymptotics
for free.

All this suggests we should define a model which we can parameterize.

69 / 79



Motivation

So far we have shown how to estimate interventional distributions
separately, but no guarantee these estimates are coherent.

We also may have multiple identifying expressions: which one should
we use?

X M Y

L p(Y | do(X ))
front door?
back door?
does it matter?

We can test constraints separately, but ultimately don’t have a way
to check if the model is a good one.

Being able to evaluate a likelihood would allow lots of standard
inference techniques (e.g. LR, Bayesian).

Even better, if model can be shown smooth we get nice asymptotics
for free.

All this suggests we should define a model which we can parameterize.

69 / 79



Motivation

So far we have shown how to estimate interventional distributions
separately, but no guarantee these estimates are coherent.

We also may have multiple identifying expressions: which one should
we use?

X M Y

L p(Y | do(X ))
front door?
back door?
does it matter?

We can test constraints separately, but ultimately don’t have a way
to check if the model is a good one.

Being able to evaluate a likelihood would allow lots of standard
inference techniques (e.g. LR, Bayesian).

Even better, if model can be shown smooth we get nice asymptotics
for free.

All this suggests we should define a model which we can parameterize.

69 / 79



Outline

1 Motivation

2 Deriving constraints via fixing

3 The Nested Markov Model

4 Finer Factorizations

5 Discrete Parameterization

6 Testing and Fitting

7 Completeness

70 / 79



Exponential Families

Theorem

Let N (G) be the collection of binary distributions that recursively
factorize according to G. Then N (G) is a curved exponential family of
dimension

d(G) =
∑

H∈H(G)

2| tail(H)|.

(This extends in the obvious way to finite discrete distributions.)

This justifies classical statistical theory:

likelihood ratio tests have asymptotic χ2-distribution;

BIC as Laplace approximation of marginal likelihood.

(Shpitser et al., 2013) give an alternative log-linear parametrization.
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Algorithms for Model Search

Can, for example, use greedy edge replacement for a score-based
approach (Evans and Richardson, 2010).

Shpitser et al. (2011) developed efficient algorithms for evaluating
probabilities in the alternating sum.

Currently no equivalent of PC algorithm for full nested model.

Can use FCI algorithm (Spirtes at al., 2000) for ordinary Markov
models associated with ADMG (conditional independences only), in
general this is a supermodel of the nested model (see Evans and
Richardson, 2014).

Open Problems:

Nested Markov equivalence;

Constraint based search;

Gaussian parametrization.
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Completeness

Could the nested Markov property be further refined?

No and Yes.

Theorem (Evans, 2015)

The constraints implied by the nested Markov model are algebraically
equivalent to causal model with latent variables (with suff. large latent
state-space).

‘Algebraically equivalent’ = ‘of the same dimension’.

So if the latent variable model is correct2, fitting the nested model is
asymptotically equivalent fitting the LV model.

However, there are additional inequality constraints. e.g. Instrumental
inequalities, CHSH inequalities etc.,

Potentially unsatisfactory as may not be a causal model corresponding to
our inferred parameters.

2and we are in the relative interior of the model space.
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More on the nested Markov model

Evans (2015) shows that the nested Markov model implies all
algebraic constraints arising from the corresponding DAG with latent
variables;

A parameterization for discrete variables is given by Evans + R
(2015), via an extension of the Möbius parametrization;

In general a latent DAG model may also imply inequalities not
captured by the nested Markov model: cf. the CHSH / Bell
inequalities in quantum mechanics;

The nested model may also be defined by constraints resulting from
an algorithm given in (Tian, 2002b).

Future Work

Characterizing nested Markov equivalence;

Methods for inferring graph structure.
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In general a latent DAG model may also imply inequalities not
captured by the nested Markov model: cf. the CHSH / Bell
inequalities in quantum mechanics;

The nested model may also be defined by constraints resulting from
an algorithm given in (Tian, 2002b).

Future Work

Characterizing nested Markov equivalence;

Methods for inferring graph structure.

76 / 79



Nested Markov model references

Evans, R. J. (2015). Margins of discrete Bayesian networks. arXiv preprint:1501.02103.

Evans, R. J. and Richardson, T. S. (2015). Smooth, identifiable supermodels of discrete
DAG models with latent variables. arXiv:1511.06813.

Evans, R.J. and Richardson, T.S. (2014). Markovian acyclic directed mixed graphs for
discrete data. Annals of Statistics vol. 42, No. 4, 1452-1482.

Richardson, T.S., Evans, R. J., Robins, J. M. and Shpitser, I. (2017). Nested Markov
properties for acyclic directed mixed graphs. arXiv:1701.06686.

Richardson, T.S. (2003). Markov Properties for Acyclic Directed Mixed Graphs. The
Scandinavian Journal of Statistics, March 2003, vol. 30, no. 1, pp. 145-157(13).

Shpitser, I., Evans, R.J., Richardson, T.S., Robins, J.M. (2014). Introduction to Nested
Markov models. Behaviormetrika, vol. 41, No.1, 2014, 3–39.

Shpitser, I., Richardson, T.S. and Robins, J.M. (2011). An efficient algorithm for computing
interventional distributions in latent variable causal models. In Proceedings of UAI-11.

Shpitser, I. and Pearl, J. (2006). Identification of joint interventional distributions in
recursive semi-Markovian causal models. Twenty-First National Conference on Artificial
Intelligence.

Tian, J. (2002) Studies in Causal Reasoning and Learning, CS PhD Thesis, UCLA.

Tian, J. and Pearl, J. (2002a). A general identification condition for causal effects. In
Proceedings of AAAI-02.

Tian, J. and J. Pearl (2002b). On the testable implications of causal models with hidden
variables. In Proceedings of UAI-02.

77 / 79



Parameterization References

(Including earlier work on the ordinary Markov model.)

Evans, R.J. and Richardson, T.S. – Maximum likelihood fitting of acyclic directed mixed
graphs to binary data. UAI, 2010.

Evans, R.J. and Richardson, T.S. – Markovian acyclic directed mixed graphs for discrete
data. Annals of Statistics, 2014.

Shpitser, I., Richardson, T.S. and Robins, J.M. An efficient algorithm for computing
interventional distributions in latent variable causal models. UAI, 2011.

Shpitser, I., Richardson, T.S., Robins, J.M. and Evans, R.J. – Parameter and structure
learning in nested Markov models. UAI, 2012.

Shpitser, I., Evans, R.J., Richardson, T.S. and Robins, J.M. – Sparse nested Markov models
with log-linear parameters. UAI, 2013.

Shpitser, I., Evans, R.J., Richardson, T.S. and Robins, J.M. – Introduction to Nested
Markov Models. Behaviormetrika, 2014.

Spirtes, P., Glymour, G., Scheines, R. – Causation Prediction and Search, 2nd Edition, MIT
Press, 2000.

78 / 79



Inequality References

Bonet, B. – Instrumentality tests revisited, UAI, 2001.

Cai Z., Kuroki, M., Pearl, J. and Tian, J. – Bounds on direct effects in the presence of
confounded intermediate variables, Biometrics, 64(3):695–701, 2008.

Evans, R.J. – Graphical methods for inequality constraints in marginalized DAGs, MLSP,
2012.

Evans, R.J. – Margins of discrete Bayesian networks, arXiv:1501.02103, 2015.

Kang, C. and Tian, J. – Inequality Constraints in Causal Models with Hidden Variables,
UAI, 2006.

Pearl, J. – On the testability of causal models with latent and instrumental variables, UAI,
1995.

79 / 79



Partition Function for General Sets

Let I(G) be the intrinsic sets of G. Define a partial ordering ≺ on I(G)
by S1 ≺ S2 if and only if S1 ⊂ S2. This induces an isomorphic partial
ordering on the corresponding recursive heads.

For any B ⊆ V let

ΦG(B) = {H ⊆ B |H maximal under ≺ among heads contained in B};

φG(B) =
⋃

H∈ΦG(B)

H.

So ΦG(B) is the ‘maximal heads’ in B, φG(B) is their union.

Define (recursively)

[∅]G ≡ ∅
[B]G ≡ ΦG(B) ∪ [φG(B)]G .

Then [B]G is a partition of B.
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d-Separation

A path is a sequence of edges in the graph; vertices may not be repeated.

A path from v to w is blocked by C ⊆ V \ {v ,w} if either

(i) any non-collider is in C :

c c

(ii) or any collider is not in C , nor has descendants in C :

d d

e

Two vertices v and w are d-separated given C ⊆ V \ {v ,w} if all paths
are blocked.
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The IV Model

Assume four variable DAG shown, but U unobserved.

Z X Y

U

Marginalized DAG model

p(z , x , y) =

∫
p(u) p(z) p(x | z , u) p(y | x , u) du

Assume all observed variables are discrete; no assumption made about
latent variables.

Nested Markov property gives saturated model, so true model of full
dimension.
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Instrumental Inequalities

Z X

U

Y
The assumption Z 6→ Y is important.
Can we check it?

Pearl (1995) showed that if the observed variables are discrete,

max
x

∑
y

max
z

P(X = x ,Y = y |Z = z) ≤ 1. (∗)

This is the instrumental inequality, and can be empirically tested.

If Z ,X ,Y are binary, then (∗) defines the marginalized DAG model
(Bonet, 2001). e.g.

P(X = x ,Y = 0 |Z = 0) + P(X = x ,Y = 1 |Z = 1) ≤ 1
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